ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way, creating the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30 degrees of the 21 cm-emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross section of the Magellanic System is ~11 000 square degrees, or around a quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate that the total mass (atomic plus ionized) of the Magellanic System is ~2.0 billion solar masses, with the ionized gas contributing over twice as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of ~0.5-1.5 Gyr, it will represent an average inflow rate of ~3.7-6.7 solar masses per year, potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Stream may not survive its journey to the disk fully intact, and will instead add material to (and cool) the corona.
We find evidence for the impact of infalling, low-metallicity gas on the Galactic disk. This is based on FUV absorption line spectra, 21-cm emission line spectra, and FIR mapping to estimate the abundance and physical properties of IV21 (IVC135+54-45 ), a galactic intermediate-velocity molecular cloud (IVMC) that lies ~300 pc above the disk. The metallicity of IV21 was estimated using observations toward the sdB star PG1144+615, located at a projected distance of 16 pc from the clouds densest core, by measuring ion and HI column densities for comparison with known solar abundances. Despite the clouds bright FIR emission and large column densities of molecular gas as traced by CO, we find that it has a sub-solar metallicity of log(Z/Z_Sun)=-0.43 +/- 0.12dex. IV21 is thus the first known sub-solar metallicity cloud in the solar neighborhood. In contrast, most intermediate-velocity clouds (IVC) have near-solar metallicities and are believed to originate in the Galactic Fountain. The clouds low metallicity is also atypical for Galactic molecular clouds, especially in the light of the bright FIR emission which suggest a substantial dust content. The measured I_100mu/N(HI) ratio is a factor of three below the average found in high latitude HI clouds within the solar neighborhood. We argue that IV21 represents the impact of an infalling, low-metallicity high-velocity cloud (HVC) that is mixing with disk gas in the lower Galactic halo.
We present a detection of a broad Ly-alpha absorber (BLA) with a matching O VI line in the nearby universe. The BLA is detected at z = 0.01028 in the high S/N spectrum of Mrk 290 obtained using the Cosmic Origins Spectrograph. The Ly-alpha absorption has two components, with b(HI) = 55 +/- 1 km/s and b(HI) = 33 +/- 1 km/s, separated in velocity by v ~ 115 km/s. The O VI, detected by FUSE at z = 0.01027, has a b(OVI) = 29 +/- 3 km/s and is kinematically well aligned with the broader HI component. The different line widths of the BLA and OVI suggest a temperature of T = 1.4 x 10^5 K in the absorber. The observed line strength ratios and line widths favor an ionization scenario in which both ion-electron collisions and UV photons contribute to the ionization in the gas. Such a model requires a low-metallicity of -1.7 dex, ionization parameter of log U ~ -1.4, a large total hydrogen column density of N(H) ~ 4 x 10^19 cm^-2, and a path length of 400 kpc. The line of sight to Mrk 290 intercepts at the redshift of the absorber, a megaparsec scale filamentary structure extending over 20 deg in the sky, with several luminous galaxies distributed within 1.5 Mpc projected distance from the absorber. The collisionally ionized gas in this absorber is likely tracing a shock-heated gaseous structure, consistent with a few different scenarios for the origin, including an over-dense region of the WHIM in the galaxy filament or highly ionized gas in the extended halo of one of the galaxies in the filament. In general, BLAs with metals provide an efficient means to study T ~ 10^5 - 10^6 K gas in galaxy halos and in the intergalactic medium. A substantial fraction of the baryons missing from the present universe is predicted to be in such environments in the form of highly ionized plasma.
190 - Andrew J. Fox 2010
(Abridged) We present an analysis of ionization and metal enrichment in the Magellanic Stream (MS), the nearest gaseous tidal stream, using HST/STIS and FUSE ultraviolet spectroscopy of two background AGN, NGC 7469 and Mrk 335. For NGC 7469, we inclu de optical spectroscopy from VLT/UVES. In both sightlines the MS is detected in low-ion and high-ion absorption. Toward NGC 7469, we measure a MS oxygen abundance [O/H]_MS=[OI/HI]=-1.00+/-0.05(stat)+/-0.08(syst), supporting the view that the Stream originates in the SMC rather than the LMC. We use CLOUDY to model the low-ion phase of the Stream as a photoionized plasma using the observed Si III/Si II and C III/C II ratios. Toward Mrk 335 this yields an ionization parameter log U between -3.45 and -3.15 and a gas density log (n_H/cm^-3) between -2.51 and -2.21. Toward NGC 7469 we derive sub-solar abundance ratios for [Si/O], [Fe/O], and [Al/O], indicating the presence of dust in the MS. The high-ion column densities are too large to be explained by photoionization, but also cannot be explained by a single-temperature collisional-ionization model (equilibrium or non-equilibrium). This suggests the high-ion plasma is multi-phase. Summing over the low-ion and high-ion phases, we derive conservative lower limits on the ratio N(total H II)/N(H I) of >19 toward NGC 7469 and >330 toward Mrk 335, showing that along these two directions the vast majority of the Stream has been ionized. The presence of warm-hot plasma together with the small-scale structure observed at 21 cm provides evidence for an evaporative interaction with the hot Galactic corona. This scenario, predicted by hydrodynamical simulations, suggests that the fate of the MS will be to replenish the Galactic corona with new plasma, rather than to bring neutral fuel to the disk.
We report on the detection of Ne VIII in an intervening multiphase absorption line system at z=0.32566 in the FUSE spectrum of the quasar 3C 263. The Ne VIII 770 A line detection has a 3.9 sigma significance. At the same velocity we also find absorpt ion lines from C IV, O III, O IV and N IV. The line parameter measurements yield log [N(Ne VIII), cm^-2] =13.98 (+0.10,-0.13) and b = 49.8 +/- 5.5 km/s. We find that the ionization mechanism in the gas phase giving rise to the Ne VIII absorption is inconsistent with photoionization. The absorber has a multi-phase structure, with the intermediate ions produced in cool photoionized gas and the Ne VIII most likely in a warm collisionally ionized medium in the temperature range (0.5 - 1.0) x 10^6 K. This is the second ever detection of an intervening Ne VIII absorption system. Its properties resemble the previous Ne VIII absorber reported by Savage et al. (2005). Direct observations of H I and O VI are needed to better constrain the physical conditions in the collisionally ionized gas phase of this absorber.
We present deep HI 21-cm and optical observations of the face-on spiral galaxy M 83 obtained as part of a project to search for high-velocity clouds (HVCs) in nearby galaxies. Anomalous-velocity neutral gas is detected toward M 83, with 5.6x10^7 Msol ar of HI contained in a disk rotating 40-50 km/s more slowly in projection than the bulk of the gas. We interpret this as a vertically extended thick disk of neutral material, containing 5.5% of the total HI within the central 8 kpc. Using an automated source detection algorithm to search for small-scale HI emission features, we find eight distinct, anomalous-velocity HI clouds with masses ranging from 7x10^5 to 1.5x10^7 Msolar and velocities differing by up to 200 km/s compared to the HI disk. Large on-disk structures are coincident with the optical spiral arms, while unresolved off-disk clouds contain no diffuse optical emission down to a limit of 27 r mag per square arcsec. The diversity of the thick HI disk and larger clouds suggests the influence of multiple formation mechanisms, with a galactic fountain responsible for the slowly-rotating disk and on-disk discrete clouds, and tidal effects responsible for off-disk cloud production. The mass and kinetic energy of the HI clouds are consistent with the mass exchange rate predicted by the galactic fountain model. If the HVC population in M 83 is similar to that in our own Galaxy, then the Galactic HVCs must be distributed within a radius of less than 25 kpc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا