ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we report what happens to a pristine oxide junction Pr0.5Ca0.5MnO3/SrTi0.95Nb.05O3 (PCMO/Nb:STO), when it is subjected to cycling of voltage bias of moderate value ({pm}4V). It is found that the initial cycling leads to formation of a p ermanent state of lower resistance where the lower resistance arises predominantly due to development of a shunt across the device film (PCMO). On successive voltage cycling with increasing magnitude, this state transforms into states of successive lower resistance that can be transformed back to the initial stable state on cycling to below a certain bias. A simple model based on p-n junction with shunt has been used to obtain information on the change of the junction on voltage cycling. It has been shown that the observation can be explained if the voltage cycling leads to lowering of barrier at the interface and also reduction in series resistance. It is suggested that this lowering can be related to the migration of oxygen ions and vacancies at the junction region. Cross-sectional imaging of the junction shows formation of permanent filamentary bridges across the thickness of the PCMO after the pristine p-n junction is first taken through a voltage cycle, which would explain appearance of a finite shunt across the p-n junction.
A novel frequency dependence of anomaly in dielectric constant versus temperature plot, around the Neel temperature T_N (~150 K), has been observed in a single crystal of bilayer manganite Pr(Sr0.1Ca0.9)2Mn2O7. The anomaly in the permittivity (epsilo n||c) occurs at a temperature T_f which moves within a temperature window (delT_f) of ~40 K around T_N for a frequency range 50 kHz-5 MHz. The capacitive component Cp of the dielectric response exhibits a clear yet broad feature around T_N which establishes the intrinsic capacitive nature of the anomaly.
In this paper we report the structural and property (magnetic and electrical transport) measurements of nanocrystals of half-doped $mathrm{La_{0.5}Ca_{0.5}MnO_3}$(LCMO) synthesized by chemical route, having particle size down to an average diameter o f 15nm. It was observed that the size reduction leads to change in crystal structure and the room temperature structure is arrested so that the structure does not evolve on cooling unlike bulk samples. The structural change mainly affects the orthorhombic distortion of the lattice. By making comparison with observed crystal structure data under hydrostatic pressure it is suggested that the change in the crystal structure of the nanocrystals occurs due to an effective hydrostatic pressure created by the surface pressure on size reduction. This not only changes the structure but also causes the room temperature structure to freeze-in. The size reduction also does not allow the long supercell modulation needed for the Charge Ordering, characteristic of this half-doped manganite, to set-in. The magnetic and transport measurements also show that the Charge Ordering (CO) does not occur when the size is reduced below a critical size. Instead, the nanocrystals show ferromagnetic ordering down to the lowest temperatures along with metallic type conductivity. Our investigation establishes a structural basis for the destabilization of CO state observed in half-doped manganite nanocrystals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا