ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze HST spectra and Chandra observations of a sample of 21 LINERs, at least 18 of which genuine AGN. We find a correlation between the X-rays and emission lines luminosities, extending over three orders of magnitude and with a dispersion of 0. 36 dex; no differences emerge between LINERs with and without broad lines, or between radio-loud and radio-quiet sources. The presence of such a strong correlation is remarkable considering that for half of the sample the X-ray luminosity can not be corrected for local absorption. This connection is readily understood since the X-ray light is associated with the same source producing the ionizing photons at the origin of the line emission. This implies that we have a direct view of the LINERs nuclei in the X-rays: the circumnuclear, high column density structure (the torus) is absent in these sources. Such a conclusion is also supported by mid-infrared data. We suggest that this is due to the general paucity of gas and dust in their nuclear regions that causes also their low rate of accretion and low bolometric luminosity.
We study a sample of 44 low-luminosity radio-loud AGN, which represent a range of nuclear radio-power spanning 5 orders of magnitude, to unveil the accretion mechanism in these galaxies. We estimate the accretion rate of gas associated with their hot coronae by analyzing archival Chandra data, to derive the deprojected density and temperature profiles in a spherical approximation. Measuring the jet power from the nuclear radio-luminosity, we find that the accretion power correlates linearly with the jet power, with an efficiency of conversion from rest mass into jet power of ~0.012. These results strengthen and extend the validity of the results obtained by Allen and collaborators for 9 radio galaxies, indicating that hot gas accretion is the dominant process in FR I radio galaxies across their full range of radio-luminosity. We find that the different levels of nuclear activity are driven by global differences in the structure of the galactic hot coronae. A linear relation links the jet power with the host X-ray surface brightness. This implies that a substantial change in the jet power must be accompanied by a global change in its ISM properties, driven for example by a major merger. This correlation provides a simple widely applicable method to estimate the jet-power of a given object by observing the intensity of its host X-ray emission. To maintain the mass flow in the jet, the fraction of gas that crosses the Bondi radius reaching the accretion disk must be > 0.002. This implies that the radiative efficiency of the disk must be < 0.005, an indication that accretion in these objects occurs not only at a lower rate, but also at lower efficiency than in standard accretion disks.
[ABRIDGED] We recently presented evidence of a connection between the brightness profiles of nearby early-type galaxies and the properties of the AGN they host. The radio loudness of the AGN appears to be univocally related to the hosts brightness pr ofile: radio-loud nuclei are only hosted by ``core galaxies while radio-quiet AGN are only found in ``power-law galaxies. We extend our analysis here to a sample of 42 nearby (V < 7000 km/s) Seyfert galaxies hosted by early-type galaxies. We used the available HST images to study their brightness profiles. Having excluded complex and highly nucleated galaxies, in the remaining 16 objects the brightness profiles can be successfully modeled with a Nuker law with a steep nuclear cusp characteristic of ``power-law galaxies (with logarithmic slope 0.51 - 1.07). This result is what is expected for these radio-quiet AGN based on our previous findings, thus extending the validity of the connection between brightness profile and radio loudness to AGN of a far higher luminosity. We explored the robustness of this result against a different choice of the analytic form for the brightness profiles, using a Sersic law. In no object could we find evidence of a central light deficit with respect to a pure Sersic model, the defining feature of ``core galaxies in this modeling framework. We conclude that, regardless of the modeling strategy, the dichotomy of AGN radio loudness can be univocally related to the hosts brightness profile. Our general results can be re-phrased as ``radio-loud nuclei are hosted by core galaxies, while radio-quiet AGN are found in non-core galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا