ترغب بنشر مسار تعليمي؟ اضغط هنا

203 - Baohua Fu 2020
In a recent preprint, Y. Namikawa proposed a conjecture on Q-factorial terminalizations and their birational geometry of nilpotent orbits. He proved his conjecture for classical simple Lie algebras. In this note, we prove his conjecture for exception al simple Lie algebras. For the birational geometry, contrary to the classical case, two new types of Mukai flops appear.
220 - Michel Brion , Baohua Fu 2015
Consider a simple algebraic group G of adjoint type, and its wonderful compactification X. We show that X admits a unique family of minimal rational curves, and we explicitly describe the subfamily consisting of curves through a general point. As an application, we show that X has the target rigidity property when G is not of type A_1 or C.
According to a well-known theorem of Brieskorn and Slodowy, the intersection of the nilpotent cone of a simple Lie algebra with a transverse slice to the subregular nilpotent orbit is a simple surface singularity. At the opposite extremity of the nil potent cone, the closure of the minimal nilpotent orbit is also an isolated symplectic singularity, called a minimal singularity. For classical Lie algebras, Kraft and Procesi showed that these two types of singularities suffice to describe all generic singularities of nilpotent orbit closures: specifically, any such singularity is either a simple surface singularity, a minimal singularity, or a union of two simple surface singularities of type $A_{2k-1}$. In the present paper, we complete the picture by determining the generic singularities of all nilpotent orbit closures in exceptional Lie algebras (up to normalization in a few cases). We summarize the results in some graphs at the end of the paper. In most cases, we also obtain simple surface singularities or minimal singularities, though often with more complicated branching than occurs in the classical types. There are, however, six singularities which do not occur in the classical types. Three of these are unibranch non-normal singularities: an $SL_2(mathbb C)$-variety whose normalization is ${mathbb A}^2$, an $Sp_4(mathbb C)$-variety whose normalization is ${mathbb A}^4$, and a two-dimensional variety whose normalization is the simple surface singularity $A_3$. In addition, there are three 4-dimensional isolated singularities each appearing once. We also study an intrinsic symmetry action on the singularities, in analogy with Slodowys work for the regular nilpotent orbit.
344 - Baohua Fu , Jun-Muk Hwang 2015
A birational transformation f: P^n --> Z, where Z is a nonsingular variety of Picard number 1, is called a special birational transformation of type (a, b) if f is given by a linear system of degree a, its inverse is given by a linear system of degre e b and the base locus S subset P^n of f is irreducible and nonsingular. In this paper, we classify special birational transformations of type (2,1). In addition to previous works Alzati-Sierra and Russo on this topic, our proof employs natural C^*-actions on Z in a crucial way. These C^*-actions also relate our result to the problem studied in our previous work on smooth projective varieties with nonzero prolongations.
129 - Michel Brion , Baohua Fu 2013
We introduce the notion of a conical symplectic variety, and show that any symplectic resolution of such a variety is isomorphic to the Springer resolution of a nilpotent orbit in a semisimple Lie algebra, composed with a linear projection.
115 - Baohua Fu , Jun-Muk Hwang 2013
Let X be an $n$-dimensional Fano manifold of Picard number 1. We study how many different ways X can compactify the complex vector group C^n equivariantly. Hassett and Tschinkel showed that when X = P^n with n geq 2, there are many distinct ways that X can be realized as equivariant compactifications of C^n. Our result says that projective space is an exception: among Fano manifolds of Picard number 1 with smooth VMRT, projective space is the only one compactifying C^n equivariantly in more than one ways. This answers questions raised by Hassett-Tschinkel and Arzhantsev-Sharoyko.
76 - Baohua Fu , De-Qi Zhang 2012
We show that a compact Kaehler manifold X is a complex torus if both the continuous part and discrete part of some automorphism group G of X are infinite groups, unless X is bimeromorphic to a non-trivial G-equivariant fibration. Some applications to dynamics are given.
81 - Baohua Fu , Jun-Muk Hwang 2010
The prolongation g^{(k)} of a linear Lie algebra g subset gl(V) plays an important role in the study of symmetries of G-structures. Cartan and Kobayashi-Nagano have given a complete classification of irreducible linear Lie algebras g subset gl(V) wit h non-zero prolongations. If g is the Lie algebra aut(hat{S}) of infinitesimal linear automorphisms of a projective variety S subset BP V, its prolongation g^{(k)} is related to the symmetries of cone structures, an important example of which is the variety of minimal rational tangents in the study of uniruled projective manifolds. From this perspective, understanding the prolongation aut(hat{S})^{(k)} is useful in questions related to the automorphism groups of uniruled projective manifolds. Our main result is a complete classification of irreducible non-degenerate nonsingular variety with non zero prolongations, which can be viewed as a generalization of the result of Cartan and Kobayashi-Nagano. As an application, we show that when $S$ is linearly normal and Sec(S) eq P(V), the blow-up of P(V) along S has the target rigidity property, i.e., any deformation of a surjective morphism Y to Bl_S(PV) comes from the automorphisms of Bl_S(PV).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا