ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a nonperturbative quantum dissipation theory, in term of hierarchical quantum master equation. It may be used with a great degree of confidence to various dynamics systems in condensed phases. The theoretical development is rooted in an im proved semiclassical treatment of Drude bath, beyond the conventional high temperature approximations. It leads to the new theory a simple modification but important improvement over the conventional stochastic Liouville equation theory, without extra numerical cost. Its broad range of validity and applicability is extensively demonstrated with two--level electron transfer model systems, where the new theory can be considered as the modified Zusman equation. We also present a criterion, which depends only on the system--bath coupling strength, characteristic bath memory time, and temperature, to estimate the performance of the hierarchical quantum master equation.
Exact quantum master equation for a driven Brownian oscillator system is constructed via a Wigner phase-space Gaussian wave packet approach. The interplay between external field and dissipation leads to this system an effective field correction that enhances the polarization. This cooperative property is resulted from an effective bath response to the external field applied on the system. It is important in the low-frequency driving and intermediate bath memory region. We demonstrate this non-Markovian effect on the linear response and nonlinear dynamics and analyze the results together with analytical asymptotic expressions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا