ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we comparatively analyze the Bures-Wasserstein (BW) geometry with the popular Affine-Invariant (AI) geometry for Riemannian optimization on the symmetric positive definite (SPD) matrix manifold. Our study begins with an observation tha t the BW metric has a linear dependence on SPD matrices in contrast to the quadratic dependence of the AI metric. We build on this to show that the BW metric is a more suitable and robust choice for several Riemannian optimization problems over ill-conditioned SPD matrices. We show that the BW geometry has a non-negative curvature, which further improves convergence rates of algorithms over the non-positively curved AI geometry. Finally, we verify that several popular cost functions, which are known to be geodesic convex under the AI geometry, are also geodesic convex under the BW geometry. Extensive experiments on various applications support our findings.
In recent years, stochastic variance reduction algorithms have attracted considerable attention for minimizing the average of a large but finite number of loss functions. This paper proposes a novel Riemannian extension of the Euclidean stochastic va riance reduced gradient (R-SVRG) algorithm to a manifold search space. The key challenges of averaging, adding, and subtracting multiple gradients are addressed with retraction and vector transport. For the proposed algorithm, we present a global convergence analysis with a decaying step size as well as a local convergence rate analysis with a fixed step size under some natural assumptions. In addition, the proposed algorithm is applied to the computation problem of the Riemannian centroid on the symmetric positive definite (SPD) manifold as well as the principal component analysis and low-rank matrix completion problems on the Grassmann manifold. The results show that the proposed algorithm outperforms the standard Riemannian stochastic gradient descent algorithm in each case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا