ترغب بنشر مسار تعليمي؟ اضغط هنا

We combine previously published interferometric and single-dish data of relatively nearby massive dense cores that are actively forming stars to test whether their `fragmentation level is controlled by turbulent or thermal support. We find no clear c orrelation between the fragmentation level and velocity dispersion, nor between the observed number of fragments and the number of fragments expected when the gravitationally unstable mass is calculated including various prescriptions for `turbulent support. On the other hand, the best correlation is found for the case of pure thermal Jeans fragmentation, for which we infer a core formation efficiency around 13 per cent, consistent with previous works. We conclude that the dominant factor determining the fragmentation level of star-forming massive dense cores at 0.1 pc scale seems to be thermal Jeans fragmentation.
We present a study of 15 new brown dwarfs belonging to the $sim7$ Myr old 25 Orionis group and Orion OB1a sub-association with spectral types between M6 and M9 and estimated masses between $sim0.07$M$_odot$ and $sim0.01$ M$_odot$. By comparing them t hrough a Bayesian method with low mass stars ($0.8lesssim$ M/M$_odotlesssim0.1$) from previous works in the 25 Orionis group, we found statistically significant differences in the number fraction of classical T Tauri stars, weak T Tauri stars, class II, evolved discs and purely photospheric emitters at both sides of the sub-stellar mass limit. Particularly we found a fraction of $3.9^{+2.4}_{-1.6}~%$ low mass stars classified as CTTS and class II or evolved discs, against a fraction of $33.3^{+10.8}_{-9.8}~%$ in the sub-stellar mass domain. Our results support the suggested scenario in which the dissipation of discs is less efficient for decreasing mass of the central object.
We present synthetic Hi and CO observations of a simulation of decaying turbulence in the thermally bistable neutral medium. We first present the simulation, with clouds initially consisting of clustered clumps. Self-gravity causes these clump cluste rs to form more homogeneous dense clouds. We apply a simple radiative transfer algorithm, and defining every cell with <Av> > 1 as molecular. We then produce maps of Hi, CO-free molecular gas, and CO, and investigate the following aspects: i) The spatial distribution of the warm, cold, and molecular gas, finding the well-known layered structure, with molecular gas surrounded by cold Hi, surrounded by warm Hi. ii) The velocity of the various components, with atomic gas generally flowing towards the molecular gas, and that this motion is reflected in the frequently observed bimodal shape of the Hi profiles. This conclusion is tentative, because we do not include feedback. iii) The production of Hi self-absorption (HISA) profiles, and the correlation of HISA with molecular gas. We test the suggestion of using the second derivative of the brightness temperature Hi profile to trace HISA and molecular gas, finding limitations. On a scale of ~parsecs, some agreement is obtained between this technique and actual HISA, as well as a correlation between HISA and N(mol). It quickly deteriorates towards sub-parsec scales. iv) The N-PDFs of the actual Hi gas and those recovered from the Hi line profiles, with the latter having a cutoff at column densities where the gas becomes optically thick, thus missing the contribution from the HISA-producing gas. We find that the power-law tail typical of gravitational contraction is only observed in the molecular gas, and that, before the power-law tail develops in the total gas density PDF, no CO is yet present, reinforcing the notion that gravitational contraction is needed to produce this component. (abridged)
Giant molecular clouds (GMCs) are the primary reservoirs of cold, star-forming molecular gas in the Milky Way and similar galaxies, and thus any understanding of star formation must encompass a model for GMC formation, evolution, and destruction. The se models are necessarily constrained by measurements of interstellar molecular and atomic gas, and the emergent, newborn stars. Both observations and theory have undergone great advances in recent years, the latter driven largely by improved numerical simulations, and the former by the advent of large-scale surveys with new telescopes and instruments. This chapter offers a thorough review of the current state of the field.
We show that the inter-cloud Larson scaling relation between mean volume density and size $rhopropto R^{-1}$, which in turn implies that mass $Mpropto R^2$, or that the column density $N$ is constant, is an artifact of the observational methods used. Specifically, setting the column density threshold near or above the peak of the column density probability distribution function Npdf ($Nsim 10^{21}$ cmalamenos 2) produces the Larson scaling as long as the Npdf decreases rapidly at higher column densities. We argue that the physical reasons behind local clouds to have this behavior are that (1) this peak column density is near the value required to shield CO from photodissociation in the solar neighborhood, and (2) gas at higher column densities is rare because it is susceptible to gravitational collapse into much smaller structures in specific small regions of the cloud. Similarly, we also use previous results to show that if instead a threshold is set for the volume density, the density will appear to be constant, implying thus that $M propto R^3$. Thus, the Larson scaling relation does not provide much information on the structure of molecular clouds, and does not imply either that clouds are in Virial equilibrium, or have a universal structure. We also show that the slope of the $M-R$ curve for a single cloud, which transitions from near-to-flat values for large radii to $alpha=2$ as a limiting case for small radii, depends on the properties of the Npdf.
106 - Fabian Heitsch 2009
Recent models of molecular cloud formation and evolution suggest that such clouds are dynamic and generally exhibit gravitational collapse. We present a simple analytic model of global collapse onto a filament and compare this with our numerical simu lations of the flow-driven formation of an isolated molecular cloud to illustrate the supersonic motions and infall ram pressures expected in models of gravity-driven cloud evolution. We apply our results to observations of the Pipe Nebula, an especially suitable object for our purposes as its low star formation activity implies insignifcant perturbations from stellar feedback. We show that our collapsing cloud model can explain the magnitude of the velocity dispersions seen in the $^{13}$CO filamentary structure by Onishi et al. and the ram pressures required by Lada et al. to confine the lower-mass cores in the Pipe nebula. We further conjecture that higher-resolution simulations will show small velocity dispersions in the densest core gas, as observed, but which are infall motions and not supporting turbulence. Our results point out the inevitability of ram pressures as boundary conditions for molecular cloud filaments, and the possibility that especially lower-mass cores still can be accreting mass at significant rates, as suggested by observations.
We present three numerical simulations of randomly driven, isothermal, non-magnetic, self-gravitating turbulence with different rms Mach numbers Ms and physical sizes L, but approximately the same value of the virial parameter, alpha approx 1.2. We o btain the following results: a) We test the hypothesis that the collapsing centers originate from locally Jeans-unstable (super-Jeans), subsonic fragments; we find no such structures. b) We find that the fraction of small-scale super-Jeans structures is larger in the presence of self-gravity. c) The velocity divergence of subregions of the simulations exhibits a negative correlation with their mean density. d) The density probability density function (PDF) deviates from a lognormal in the presence of self-gravity. e) Turbulence alone in the large-scale simulation does not produce regions with the same size and mean density as those of the small-scale simulation. Items (b)-(e) suggest that self-gravity is not only involved in causing the collapse of Jeans-unstable density fluctuations produced by the turbulence, but also in their {it formation}. We also measure the star formation rate per free-fall time, as a function of Ms for the three runs, and compare with the predictions of recent semi-analytical models. We find marginal agreement to within the uncertainties of the measurements. However, the hypotheses of those models neglect the net negative divergence of dense regions we find in our simulations. We conclude that a) part of the observed velocity dispersion in clumps must arise from clump-scale inwards motions, and b) analytical models of clump and star formation need to take into account this dynamical connection with the external flow and the fact that, in the presence of self-gravity, the density PDF may deviate from a lognormal.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا