ترغب بنشر مسار تعليمي؟ اضغط هنا

Cavity magnonics deals with the interaction of magnons - elementary excitations in magnetic materials - and confined electromagnetic fields. We introduce the basic physics and review the experimental and theoretical progress of this young field that is gearing up for integration in future quantum technologies. Much of its appeal is derived from the strong magnon-photon coupling and the easily-reached nonlinear regime in microwave cavities. The interaction of magnons with light as detected by Brillouin light scattering is enhanced in magnetic optical resonators, which can be employed to manipulate magnon distributions. The cavity photon-mediated coupling of a magnon mode to a superconducting qubit enables measurements in the single magnon limit.
We investigate the electrical conductivity and thermoelectric effects in topological crystalline insulators in the presence of short- and long-range impurity interactions. We employ the generalized Boltzmann formalism for anisotropic Fermi surface sy stems. The conductivity exhibits a local minimum as doping varies owing to the Van Hove singularity in the density of states originated from the saddle point in the surface states band structure. Suppression of the interband scattering of the charge carriers at high-energy Dirac points results in a maximum in the electrical conductivity. Whenever the Fermi level passes an extremum in the conductivity, Seebeck coefficient changes sign. In addition, it is revealed that profound thermoelectric effects can be attained around these extrema points.
We investigate the Josephson effect in a bilayer graphene flake contacted by two monolayer sheet deposited by superconducting electrodes. It is found that when the electrodes are attached to the different layers of the bilayer, the Josephson current is in a $pi$ state when the bilayer region is undoped and in the absence of vertical bias. Applying doping or bias to the junction reveals $pi-0$ transitions which can be controlled by varying the temperature and the junction length. The supercurrent reversal here is very different from the ferromagnetic Josephson junctions where the spin degree of freedom plays the key role. We argue that the scattering processes accompanied by layer and sublattice index change give rise to the scattering phases which their effect varies with doping and the bias. Such scattering phases are responsible for the $pi-0$ transitions. On the other hand if both of the electrodes are coupled to the same layer of the flake or the flake has AA stacking instead of common AB, the junction will be always in $0$ state since layer or sublattice index is not changed.
We investigate the spin-dependent thermoelectric effects in magnetic graphene in both diffusive and ballistic regimes. Employing the Boltzmann and Landauer formalisms we calculate the spin and charge Seebeck coefficients (thermopower) in magnetic gra phene varying the spin splitting, temperature, and doping of the junction. It is found that while in normal graphene the temperature gradient drive a charge current, in the case of magnetic graphene a significant spin current is also established. In particular we show that in the undoped magnetic graphene in which different spin carriers belong to conduction and valence bands, a pure spin current is driven by the temperature gradient. In addition it is revealed that profound thermoelectric effects can be achieved at intermediate easily accessible temperatures when the thermal energy is comparable with Fermi energy $k_BTlesssim mu$. By further investigation of the spin-dependent Seebeck effect and a significantly large figure of merit for spin thermopower $mathcal{Z}_{rm sp}T$, we suggest magnetic graphene as a promising material for spin-caloritronics studies and applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا