ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a quantum-mechanical description of quark-hadron fragmentation in a nuclear environment. It employs the path-integral formulation of quantum mechanics, which takes care of all phases and interferences, and which contains all relevant time scales, like production, coherence, formation, etc. The cross section includes the probability of pre-hadron (colorless dipole) production both inside and outside the medium. Moreover, it also includes inside-outside production, which is a typical quantum-mechanical interference effect (like twin-slit electron propagation). We observe a substantial suppression caused by the medium, even if the pre-hadron is produced outside the medium and no energy loss is involved. This important source of suppression is missed in the usual energy-loss scenario interpreting the effect of jet quenching observed in heavy ion collisions. This may be one of the reasons of a too large gluon density, reported by such analyzes.
309 - B.Z. Kopeliovich 2008
Within a light-cone quantum-chromodynamics dipole formalism based on the Green function technique, we study nuclear shadowing in deep-inelastic scattering at small Bjorken xB < 0.01. Such a formalism incorporates naturally color transparency and cohe rence length effects. Calculations of the nuclear shadowing for the bar{q}q Fock component of the photon are based on an exact numerical solution of the evolution equation for the Green function, using a realistic form of the dipole cross section and nuclear density function. Such an exact numerical solution is unavoidable for xB > 0.0001, when a variation of the transverse size of the bar{q}q Fock component must be taken into account. The eikonal approximation, used so far in most other models, can be applied only at high energies, when xB < 0.0001 and the transverse size of the bar{q}q Fock component is frozen during propagation through the nuclear matter. At xB < 0.01 we find quite a large contribution of gluon suppression to nuclear shadowing, as a shadowing correction for the higher Fock states containing gluons. Numerical results for nuclear shadowing are compared with the available data from the E665 and NMC collaborations. Nuclear shadowing is also predicted at very small xB corresponding to LHC kinematical range. Finally the model predictions are compared and discussed with the results obtained from other models.
We calculate the cross section and single-spin azimuthal asymmetry, A_n(t) for inclusive neutron production in pp collisions at forward rapidities relative to the polarized proton. Absorptive corrections to the pion pole generate a relative phase bet ween the spin-flip and non-flip amplitudes, which leads to an appreciable spin asymmetry. However, the asymmetry observed recently in the PHENIX experiment at RHIC at very small |t|~0.01GeV^2 cannot be explained by this mechanism.
We calculate absorptive corrections to single pion exchange in the production of leading neutrons in pp collisions. Contrary to the usual procedure of convolving the survival probability with the cross section, we apply corrections to the spin amplit udes. The non-flip amplitude turns out to be much more suppressed by absorption than the spin-flip one. We identify the projectile proton Fock state responsible for the absorptive corrections as a color octet-octet 5-quarks configuration. Calculations within two very different models, color-dipole light-cone description, and in hadronic representation, lead to rather similar absorptive corrections. We found a much stronger damping of leading neutrons than in some of previous estimates. Correspondingly, the cross section is considerably smaller than was measured at ISR. However, comparison with recent measurements by the ZEUS collaboration of neutron production in deep-inelastic scattering provides a strong motivation for challenging the normalization of the ISR data. This conjecture is also supported by preliminary data from the NA49 experiment for neutron production in pp collisions at SPS.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا