ترغب بنشر مسار تعليمي؟ اضغط هنا

Abridged. The feedback between massive stars and the interstellar medium is one of the most important processes in the evolution of dwarf galaxies. This interaction results in numerous neutral and ionised gas structures that have been found both in t he disc and in the halo of these galaxies. However, their origin and fate are still poorly understood. We here present new HI and optical data of two nearby irregular dwarf galaxies: IC 4662 and NGC 5408. The HI line data were obtained with the ATCA and are part of the Local Volume HI Survey. They are complemented by optical images and spectroscopic data obtained with the ESO NTT and the ESO 3.6m telescope. Our main aim is to study the kinematics of the neutral and ionised gas components in order to search for outflowing gas structures and to make predictions about their fate. We find the HI gas envelopes of both galaxies to extend well beyond the optical discs. The optical disc is embedded into the central HI maximum in both galaxies. However, higher resolution HI maps show that the HI intensity peaks are typically offset from the prominent HII regions. While NGC 5408 shows a fairly regular HI velocity field, which allows us to derive a rotation curve, IC 4662 reveals a rather twisted HI velocity field, possibly caused by a recent merger event. We detect outflows with velocities between 20 and 60 km/s in our Halpha spectra of both galaxies, sometimes with HI counterparts of similar velocity. We suggest the existence of expanding superbubbles, especially in NGC 5408. This is also supported by the detection of FWHMs as high as 70 km/s in Halpha. In case of NGC 5408, we compare our results with the escape velocity of the galaxy, which shows that the measured expansion velocities are in all cases too low to allow the gas to escape from the gravitational potential of NGC 5408. This result is consistent with studies of other dwarf galaxies.
Context. Outflows powered by the injection of kinetic energy from massive stars can strongly affect the chemical evolution of galaxies, in particular of dwarf galaxies, as their lower gravitational potentials enhance the chance of a galactic wind. Aims. We therefore performed a detailed kinematic analysis of the neutral and ionised gas components in the nearby star-forming irregular dwarf galaxy NGC 4861. Similar to a recently published study of NGC 2366, we want to make predictions about the fate of the gas and to discuss some general issues about this galaxy. Methods. Fabry-Perot interferometric data centred on the Halpha line were obtained with the 1.93m telescope at the Observatoire de Haute-Provence. They were complemented by HI synthesis data from the VLA. We performed a Gaussian decomposition of both the Halpha and the HI emission lines in order to search for multiple components indicating outflowing gas. The expansion velocities of the detected outflows were compared to the escape velocity of NGC 4861, which was modelled with a pseudo-isothermal halo. Results. Both in Halpha and HI the galaxy shows several outflows, three directly connected to the disc and probably forming the edges of a supergiant shell, and one at kpc-distance from the disc. We measured velocity offsets of 20 to 30 km/s, which are low in comparison to the escape velocity of the galaxy and therefore minimise the chance of a galactic wind.
Context. The cusp-core discrepancy is one of the major problems in astrophysics. It results from comparing the observed mass distribution of galaxies with the predictions of Cold Dark Matter simulations. The latter predict a cuspy density profile in the inner parts of galaxies, whereas observations of dwarf and low surface brightness galaxies show a constant density core. Aims. We want to determine the shape of the dark matter potential in the nuclear regions of a sample of six nearby irregular dwarf galaxies. Methods. In order to quantify the amount of non-circular motions which could potentially affect a mass decomposition, we first perform a harmonic decomposition of the HI Hermite velocity fields of all sample galaxies. We then decompose the HI rotation curves into different mass components by fitting NFW and pseudo-isothermal halo models to the HI rotation curves using a chi^2 minimisation. We model the minimum-disc, the minimum-disc+gas, and the maximum-disc cases. Results. The non-circular motions are in all cases studied here of the order of only a few km/s (generally corresponding to less than 25% of the local rotation velocity), which means that they do not significantly affect the rotation curves. The observed rotation curves can better be described by the cored pseudo-isothermal halo than by the NFW halo. The slopes of the dark matter density profiles confirm this result and are in good agreement with previous studies. The quality of the fits can often be improved when including the baryons, which suggests that they contribute significantly to the inner part of the density profile of dwarf galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا