ترغب بنشر مسار تعليمي؟ اضغط هنا

By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quant um logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require optical memory as do deterministic logic gates for optical quantum computing. In this paper we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory. We also show storage recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.
We propose a photon echo quantum memory scheme using detuned Raman coupling to long lived ground states. In contrast to previous 3-level schemes based on controlled reversible inhomogeneous broadening that use sequences of $pi$-pulses, the scheme doe s not require accurate control of the coupling dynamics to the ground states. We present a proof of principle experimental realization of our proposal using rubidium atoms in a warm vapour cell. The Raman resonance line is broadened using a magnetic field that varies linearly along the direction of light propagation. Inverting the magnetic field gradient rephases the atomic dipoles and re-emits the light pulse in the forward direction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا