ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on high-resolution acoustic, specific-heat and thermal expansion measurements in the vicinity of the antiferromagnetic phase transition at T_N = 1.88 K on a high-quality single crystal of the natural mineral azurite. A detailed investigatio n of the critical contribution to the various quantities at T_N is presented. The set of critical exponents and amplitude ratios of the singular contributions above and below the transition indicate that the system can be reasonably well described by a three-dimensional Heisenberg antiferromagnet.
The presence of a quantum critical point (QCP) can significantly affect the thermodynamic properties of a material at finite temperatures T. This is reflected, e.g., in the entropy landscape S(T, r) in the vicinity of a QCP, yielding particularly str ong variations for varying the tuning parameter r such as pressure or magnetic field B. Here we report on the determination of the critical enhancement of $ delta S / delta B$ near a B-induced QCP via absolute measurements of the magnetocaloric effect (MCE), $(delta T / delta B)_S$, and demonstrate that the accumulation of entropy around the QCP can be used for efficient low-temperature magnetic cooling. Our proof of principle is based on measurements and theoretical calculations of the MCE and the cooling performance for a Cu$^{2+}$-containing coordination polymer, which is a very good realization of a spin-1/2 antiferromagnetic Heisenberg chain - one of the simplest quantum-critical systems.
406 - P. T. Cong , B. Wolf , M. de Souza 2010
We report on a systematic study of the magnetic properties on single crystals of the solid solution Cs$_2$CuCl$_{4-x}$Br$_x$ (0 $leq$ x $leq$ 4), which include the two known end-member compounds Cs$_2$CuCl$_4$ and Cs$_2$CuBr$_4$, classified as quasi- two-dimensional quantum antiferromagnets with different degrees of magnetic frustration. By comparative measurements of the magnetic susceptibility $chi$($T$) on as many as eighteen different Br concentrations, we found that the inplane and out-of-plane magnetic correlations, probed by the position and height of a maximum in the magnetic susceptibility, respectively, do not show a smooth variation with x. Instead three distinct concentration regimes can be identified, which are separated by critical concentrations x$_{c1}$ = 1 and x$_{c2}$ = 2. This unusual magnetic behavior can be explained by considering the structural peculiarities of the materials, especially the distorted Cu-halide tetrahedra, which support a site-selective replacement of Cl- by Br- ions. Consequently, the critical concentrations x$_{c1}$ (x$_{c2}$) mark particularly interesting systems, where one (two) halidesublattice positions are fully occupied.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا