ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremely metal-poor (XMP) galaxies are chemically, and possibly dynamically, primordial objects in the local Universe. Our objective is to characterize the HI content of the XMP galaxies as a class, using as a reference the list of 140 known local X MPs compiled by Morales-Luis et al. (2011). We have observed 29 XMPs, which had not been observed before at 21 cm, using the Effelsberg radio telescope. This information was complemented with HI data published in literature for a further 53 XMPs. In addition, optical data from the literature provided morphologies, stellar masses, star-formation rates and metallicities. Effelsberg HI integrated flux densities are between 1 and 15 Jy km/s, while line widths are between 20 and 120 km/s. HI integrated flux densities and line widths from literature are in the range 0.1 - 200 Jy km/s and 15 - 150 km/s, respectively. Of the 10 new Effelsberg detections, two sources show an asymmetric double-horn profile, while the remaining sources show either asymmetric (7 sources) or symmetric (1 source) single-peak 21 cm line profiles. An asymmetry in the HI line profile is systematically accompanied by an asymmetry in the optical morphology. Typically, the g-band stellar mass-to-light ratios are ~0.1, whereas the HI gas mass-to-light ratios may be up to 2 orders of magnitude larger. Moreover, HI gas-to-stellar mass ratios fall typically between 10 and 20, denoting that XMPs are extremely gas-rich. We find an anti-correlation between the HI gas mass-to-light ratio and the luminosity, whereby fainter XMPs are more gas-rich than brighter XMPs, suggesting that brighter sources have converted a larger fraction of their HI gas into stars. The dynamical masses inferred from the HI line widths imply that the stellar mass does not exceed 5% of the dynamical mass, while the ion{H}{i} mass constitutes between 20 and 60% of the dynamical mass. (abridged)
We aim at analysing systematically the distribution and physical properties of neutral and mildly ionised gas in the Milky Way halo, based on a large absorption-selected data set. Multi-wavelength studies were performed combining optical absorption l ine data of CaII and NaI with follow-up HI 21-cm emission line observations along 408 sight lines towards low- and high-redshift QSOs. We made use of archival optical spectra obtained with UVES/VLT. HI data were extracted from the Effelsberg-Bonn HI survey and the Galactic All-Sky survey. For selected sight lines we obtained deeper follow-up observations using the Effelsberg 100-m telescope. CaII (NaI) halo absorbers at intermediate and high radial velocities are present in 40-55% (20-35%) of the sightlines, depending on the column density threshold chosen. Many halo absorbers show multi-component absorption lines, indicating the presence of sub-structure. In 65% of the cases, absorption is associated with HI 21-cm emission. The CaII (NaI) column density distribution function follows a power-law with a slope of -2.2 (-1.4). Our absorption-selected survey confirms our previous results that the Milky Way halo is filled with a large number of neutral gas structures whose high column density tail represents the population of common HI high- and intermediate-velocity clouds seen in 21-cm observations. We find that CaII/NaI column density ratios in the halo absorbers are typically smaller than those in the Milky Way disc, in the gas in the Magellanic Clouds, and in damped Lyman-alpha systems. The small ratios (prominent in particular in high-velocity components) indicate a lower level of Ca depletion onto dust grains in Milky Way halo absorbers compared to gas in discs and inner regions of galaxies.
We perform a systematic study of physical properties and distribution of neutral and ionised gas in the halo of the Milky Way (MW). Beside the large neutral intermediate- and high-velocity cloud (IVC, HVC) complexes there exists a population of partl y ionised gaseous structures with low-column densities that have a substantial area filling factor. The origin and nature of these structures are still under debate. We analyse the physical parameters of the MW halo gas and the relation to quasar (QSO) metal-absorption line systems at low and high redshifts. For this purpose we combine new HI 21-cm data from the EBHIS and GASS surveys with optical quasar absorption line data to study the filling factor and distribution of these gaseous clouds in the halo at HI densities below 10^19 1/cm^2. This study is important to understand the evolution of the MW in particular and the gas accretion mechanisms of galaxies in general.
The Effelsberg-Bonn HI Survey (EBHIS) covers the whole sky north of Dec(2000) = -5 deg. on a fully sampled angular grid. Using state-of-the-art FPGA-spectrometers we perform a Milky Way and an extragalactic HI survey in parallel. Moreover, the high d ynamic range and short dump time of the HI spectra allow to overcome the vast majority of all radio-frequency-interference (RFI) events. The Milky Way data will be corrected for the stray-radiation bias which warrants a main-beam efficiency of 99%. Towards the whole survey area we exceed the sensitivity limit of HIPASS, while towards the Sloan-Digital-Sky-Survey (SDSS) area EBHIS offers an order of magnitude higher mass sensitivity. The Milky Way data will be a cornerstone for multi-frequency astrophysics, while the extragalactic part will disclose detailed information on the structure formation of the local universe.
Since autumn 2008 a new L-band 7-Feed-Array receiver is used for an HI 21-cm line survey performed with the 100-m Effelsberg telescope. The survey will cover the whole northern hemisphere comprising both, the galactic and extragalactic sky in paralle l. Using state-of-the-art FPGA based digital Fast Fourier Transform spectrometers, superior in dynamic range and temporal resolution, allows to apply sophisticated radio frequency interferences (RFI) mitigation schemes to the survey data. The EBHIS data reduction software includes the RFI mitigation, gain-curve correction, intensity calibration, stray-radiation correction, gridding, and source detection. We discuss the severe degradation of radio astronomical HI data by RFI signals and the gain in scientific yield when applying modern RFI mitigation schemes. For this aim simulations of the galaxy distribution within the local volume (z<0.07) with and without RFI degradation were performed. These simulations, allow us to investigate potential biases and selection effects introduced by the data reduction software and the applied source parametrization methods.
55 - B. Winkel 2007
The new L-band 7-feed-array at the 100-m telescope in Effelsberg will be used to perform an unbiased fully sampled HI survey of the entire northern hemisphere observing the galactic and extragalactic sky using simultaneously two different backends. The survey will be extremely valuable for a broad range of research topics: study of the low-mass end of the HI mass function (HIMF) in the local volume, environmental and evolutionary effects (as seen in the HIMF), the search for galaxies near low-redshift Lyman-alpha absorbers, and analysis of multiphase and extraplanar gas, HI shells, and ultra-compact high-velocity-clouds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا