ترغب بنشر مسار تعليمي؟ اضغط هنا

We study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clus ters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 solar mass helium white dwarf in binaries with orbital frequencies in the LISA gravitational wave frequency band and companion masses ranging from 0.3 to 10^5 solar masses. The resulting tidal evolution time scales for the orbital semi-major axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational wave templates of white dwarf binaries in the LISA band. Spin-up of the white dwarf, on the other hand, can occur on time scales of less than 10Myr, provided that the white dwarf is initially rotating with a frequency much smaller than the orbital frequency. For semi-detached white dwarf binaries spin-up can occur on time scales of less than 1Myr. Nevertheless, the time scales remain longer than the orbital inspiral time scales due to gravitational radiation, so that the degree of asynchronism in these binaries increases. As a consequence, tidal forcing eventually occurs at forcing frequencies beyond the quasi-static tide approximation. For the shortest period binaries, energy dissipation is therefore expected to take place through dynamic tides and resonantly excited g-modes.
We apply population synthesis techniques to calculate the present day population of post-common envelope binaries (PCEBs) for a range of theoretical models describing the common envelope (CE) phase. Adopting the canonical energy budget approach we co nsider models where the ejection efficiency, $alpha_{rmn{CE}}$ is either a constant, or a function of the secondary mass. We obtain the envelope binding energy from detailed stellar models of the progenitor primary, with and without the thermal and ionization energy, but we also test a commonly used analytical scaling. We also employ the alternative angular momentum budget approach, known as the $gamma$-algorithm. We find that a constant, global value of $alpha_{rmn{CE}} ga 0.1$ can adequately account for the observed population of PCEBs with late spectral-type secondaries. However, this prescription fails to reproduce IK Pegasi, which has a secondary with spectral type A8. We can account for IK Pegasi if we include thermal and ionization energy of the giants envelope, or if we use the $gamma$-algorithm. However, the $gamma$-algorithm predicts local space densities that are 1 to 2 orders of magnitude greater than estimates from observations. In contrast, the canonical energy budget prescription with an initial mass ratio distribution that favours unequal initial mass ratios gives a local space density which is in good agreement with observations, and best reproduces the observed distribution of PCEBs. Finally, all models fail to reproduce the sharp decline for orbital periods, $P_{rmn{orb}} ga 1$ d in the orbital period distribution of observed PCEBs, even if we take into account selection effects against systems with long orbital periods and early spectral-type secondaries.
We propose a physically motivated and self-consistent prescription for the modeling of transient neutron star (NS) low-mass X-ray binary (LMXB) properties, such as duty cycle (DC), outburst duration and recurrence time. We apply this prescription to the population synthesis (PS) models of field LMXBs presented by Fragos et al. (2008), and compare the transient LMXB population to the Chandra X-ray survey of the two elliptical galaxies NGC 3379 and NGC 4278, which revealed several transient sources (Brassington et al., 2008, 2009). We are able to exclude models with a constant DC for all transient systems, while models with a variable DC based on the properties of each system are consistent with the observed transient populations. We predict that the majority of the observed transient sources in these two galaxies are LMXBs with red giant donors. Our comparison suggests that LMXBs formed through evolution of primordial field binaries are dominant in globular cluster (GC) poor elliptical galaxies, while they still have a significant contribution in GC rich ones.
In recent years, an increasing number of proper motions have been measured for Galactic X-ray binaries. When supplemented with accurate determinations of the component masses, orbital period, and donor effective temperature, these kinematical constra ints harbor a wealth of information on the systems past evolution. Here, we consider all this available information to reconstruct the full evolutionary history of the black hole X-ray binary XTE J1118+480, assuming that the system originated in the Galactic disk and the donor has solar metallicity. This analysis accounts for four evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics due to explosive mass loss and possibly a black hole natal kick at the time of core collapse. We find that right after black hole formation, the system consists of a ~6.0-10.0 solar masses black hole and a ~1.0-1.6 solar masses main-sequence star. We also find that that an asymmetric natal kick is not only plausible but required for the formation of this system, and derive a lower and upper limit on the black hole natal kick velocity magnitude of 80 km/s and 310 km/s, respectively.
79 - B. Willems 2008
In globular clusters, dynamical interactions give rise to a population of eccentric double white dwarfs detectable by the Laser Interferometer Space Antenna (LISA) up to the Large Magellanic Cloud. In this Letter, we explore the detectability of peri astron precession in these systems with LISA. Unlike previous investigations, we consider contributions due to tidal and rotational distortions of the binary components in addition to general relativistic contributions to the periastron precession. At orbital frequencies above a few mHz, we find that tides and stellar rotation dominate, opening up a possibly unique window to the study of the interior and structure of white dwarfs.
We consider the formation of double white dwarfs (DWDs) through dynamical interactions in globular clusters. Such interactions can give rise to eccentric DWDs, in contrast to the exclusively circular population expected to form in the Galactic disk. We show that for a 5-year Laser Interferometer Space Antenna (LISA) mission and distances as far as the Large Magellanic Cloud, multiple harmonics from eccentric DWDs can be detected at a signal-to-noise ratio higher than 8 for at least a handful of eccentric DWDs, given their formation rate and typical lifetimes estimated from current cluster simulations. Consequently the association of eccentricity with stellar-mass LISA sources does not uniquely involve neutron stars, as is usually assumed. Due to the difficulty of detecting (eccentric) DWDs with present and planned electromagnetic observatories, LISA could provide unique dynamical identifications of these systems in globular clusters.
We present a magnetization study of low density YBCO ceramics carried out in magnetic fields 0.5 Oe < H < 50 kOe. It was demonstrated that superconducting links between grains may be completely suppressed either by a magnetic field of the order of 10 0 Oe (at low temperatures) or by an increase of temperature above 70 K. This property of present samples allowed to evaluate the ratio between an average grain size and the magnetic field penetration depth lambda. Furthermore, at temperatures T > 85 K, using low-field magnetization measurements, we could evaluate the temperature dependence of lambda, which turned out to be very close to predictions of the conventional Ginzburg-Landau theory. Although present samples consisted of randomly oriented grains, specifics of magnetization measurements allowed for evaluation of lambda_ab(T). Good agreement between our estimation of the grain size with the real sample structure provides evidence for the validity of this analysis of magnetization data. Measurements of equilibrium magnetization in high magnetic fields were used for evaluation of Hc2(T). At temperatures close to T_c, the Hc2(T) dependence turned out to be linear in agreement with the Ginzburg-Landau theory. The value of temperature, at which Hc2 vanishes, coincides with the superconducting critical temperature evaluated from low-field measurements.
135 - B. Willems 2007
We present results of a population synthesis study aimed at examining the role of spin-kick alignment in producing a correlation between the spin period of the first-born neutron star and the orbital eccentricity of observed double neutron star binar ies in the Galactic disk. We find spin-kick alignment to be compatible with the observed correlation, but not to alleviate the requirements for low kick velocities suggested in previous population synthesis studies. Our results furthermore suggest low- and high-eccentricity systems may form through two distinct formation channels distinguished by the presence or absence of a stable mass transfer phase before the formation of the second neutron star. The presence of highly eccentric systems in the observed sample of double neutron stars may furthermore support the notion that neutron stars accrete matter when moving through the envelope of a giant companion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا