ترغب بنشر مسار تعليمي؟ اضغط هنا

163 - Jian Gao , B. W. Jiang , Aigen Li 2013
Based on the photometric data from the Spitzer/SAGE survey and with red giants as the extinction tracers, the mid-infrared (MIR) extinction laws in the Large Magellanic Cloud (LMC) are derived for the first time in the form of A_lambda/A_Ks, the exti nction in the four IRAC bands (i.e., [3.6], [4.5], [5.8] and [8.0]um) relative to the 2MASS Ks band at 2.16um. We obtain the near-infrared (NIR) extinction coefficient to be E(J-H)/E(H-Ks)=1.29pm0.04 and E(J-Ks)/E(H-Ks)=1.94pm0.04. The wavelength dependence of the MIR extinction A_lambda/A_Ks in the LMC varies from one sightline to another. The overall mean MIR extinction is A_[3.6]/A_Ks=0.72pm0.03, A_[4.5]/A_Ks=0.94pm0.03, A_[5.8]/A_Ks=0.58pm0.04, and A_[8.0]/A_Ks=0.62pm0.05. Except for the extinction in the IRAC [4.5] band which may be contaminated by the 4.6um CO gas absorption of red giants (which are used to trace the LMC extinction), the extinction in the other three IRAC bands show a flat curve, close to the Milky Way Rv = 5.5 model extinction curve (where Rv is the optical total-to-selective extinction ratio). The possible systematic bias caused by the correlated uncertainties of Ks-lambda and J-Ks is explored in terms of Monte-Carlo simulations. It is found that this could lead to an overestimation of A_lambda/A_Ks in the MIR.
142 - Ming Yang , B. W. Jiang 2012
The characteristics of light variation of RSGs in SMC are analyzed based on the nearly 8-10 year long data collected by the ASAS and MACHO projects. The identified 126 RSGs are classified into five categories accordingly: 20 with poor photometry, 55 with no reliable period, 6 with semi-regular variation, 15 with Long Secondary Period (LSP) and distinguishable short period and 30 with only LSP. For the semi-regular variables and the LSP variables with distinguishable short period, the Ks band period-luminosity (P-L) relation is analyzed and compared with that of the Galaxy, LMC and M33. It is found that the RSGs in these galaxies obey similar P-L relation except the Galaxy. In addition, the P-L relations in the infrared bands, namely the 2MASS JHKs, Spitzer/IRAC and Spitzer/MIPS 24 {mu}m bands, are derived with high reliability. The best P-L relation occurs in the Spitzer/IRAC [3.6] and [4.5] bands. Based on the comparison with the theoretical calculation of the P-L relation, the mode of pulsation of RSGs in SMC is suggested to be the first overtone radial mode.
146 - Ming Yang , B. W. Jiang 2010
From previous samples of Red Supergiants (RSGs) by various groups, 191 objects are assembled to compose a large sample of RSG candidates in LMC. For 189 of them, the identity as a RSG is verified by their brightness and color indexes in several near- and mid-infrared bands related to the 2MASS JHKs bands and the Spitzer/IRAC and Spitzer/MIPS bands. From the visual time-series photometric observations by the ASAS and MACHO projects which cover nearly 8-10 years, the period and amplitude of light variation are analyzed carefully using both the PDM and Period04 methods. According to the properties of light variation, these objects are classified into five categories: (1) 20 objects are saturated in photometry or located in crowded stellar field with poor photometric results, (2) 35 objects with too complex variation to have any certain period, (3) 23 objects with irregular variation, (4) 16 objects with semi-regular variation, and (5) 95 objects with Long Secondary Period (LSP) among which 31 have distinguishable short period, and 51 have a long period shorter than 3000 days that can be determined with reasonable accuracy. For the semi-regular variables and the LSP variables with distinguishable short period, the period-luminosity relation is analyzed in the visual, near-infrared and mid-infrared bands. It is found that the P-L relation is tight in the infrared bands such as the 2MASS JHKs bands and the Spitzer/IRAC bands, in particular in the Spitzer/IRAC [3.6] and [4.5] bands; meanwhile, the P-L relation is relatively sparse in the V band which may be caused by the inhomogeneous interstellar extinction. The results are compared with others P-L relationships for RSGs and the P-L sequences of red giants in LMC.
The origin of the long secondary periods (LSPs) in red variables remains a mystery up to now, although there exist many models. The light curves of some LSPs stars mimic an eclipsing binary with a pulsating red giant component. To test this hypothesi s, the observational data of two LSP variable red giants, 77.7795.29 and 77.8031.42, discovered by the MACHO project from the LMC, are collected and analyzed. The probable eclipsing features of the light curves are simulated by the Wilson-Devinney (W-D) method. The simulation yields a contact and a semidetached geometry for the two systems, respectively. In addition, the pulsation constant of the main pulsating component in each binary system is derived. By combining the results of the binary model and the pulsation component, we investigate the feasibility of the pulsating binary model. It is found that the radial velocity curve expected from the binary model has a much larger amplitude than the observed one and a period double the observed one. Furthermore, the masses of the components based on the density derived from the binary orbit solution are too low to be compatible with both the evolutionary stage and the high luminosity. Although the pulsation mode identified by the pulsation constant which is dependent on the density from the binary-model is consistent with the first or second overtone radial pulsation, we conclude that the pulsating binary model is a defective model for the LSP.
86 - Jian Gao 2009
Based on the data obtained from the Spitzer/GLIPMSE Legacy Program and the 2MASS project, we derive the extinction in the four IRAC bands, [3.6], [4.5], [5.8] and [8.0] micron, relative to the 2MASS Ks band (at 2.16 micron) for 131 GLIPMSE fields alo ng the Galactic plane within |l|<65 deg, using red giants and red clump giants as tracers. As a whole, the mean extinction in the IRAC bands (normalized to the 2MASS Ks band), A_[3.6]/A_Ks=0.63, A_[4.5]/A_Ks=0.57, A_[5.8]/A_Ks=0.49, A_[8.0]/A_Ks=0.55, exhibits little variation with wavelength (i.e. the extinction is somewhat flat or gray). This is consistent with previous studies and agrees with that predicted from the standard interstellar grain model for R_V=5.5 by Weingartner & Draine (2001). As far as individual sightline is concerned, however, the wavelength dependence of the mid-infrared interstellar extinction A_{lambda}/A_Ks varies from one sightline to another, suggesting that there may not exist a universal IR extinction law. We, for the first time, demonstrate the existence of systematic variations of extinction with Galactic longitude which appears to correlate with the locations of spiral arms as well as with the variation of the far infrared luminosity of interstellar dust.
56 - Jian Gao 2008
Observationally, both the 3.4micron aliphatic hydrocarbon C--H stretching absorption feature and the 9.7micron amorphous silicate Si--O stretching absorption feature show considerable variations from the local diffuse interstellar medium (ISM) to Gal actic center (GC): both the ratio of the visual extinction (A_V) to the 9.7micron Si--O optical depth (tausil) and the ratio of A_V to the 3.4micron C--H optical depth (tauahc) of the solar neighborhood local diffuse ISM are about twice as much as that of the GC. In this work, we try to explain these variations in terms of a porous dust model consisting of a mixture of amorphous silicate, carbonaceous organic refractory dust (as well as water ice for the GC dust).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا