ترغب بنشر مسار تعليمي؟ اضغط هنا

The time-dependent transport through single-molecule magnets coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized master equation method. We investigate the transient regime induced by the periodic switching o f the source and drain contacts. If the electrodes have opposite magnetizations the quantum turnstile operation allows the stepwise writing of intermediate excited states. In turn, the transient currents provide a way to read these states. Within our approach we take into account both the uniaxial and transverse anisotropy. The latter may induce additional quantum tunneling processes which affect the efficiency of the proposed read-and-write scheme. An equally weighted mixture of molecular spin states can be prepared if one of the electrodes is ferromagnetic.
We study the localization properties of a test dipole feeling the disordered potential induced by dipolar impurities trapped at random positions in an optical lattice. This random potential is marked by correlations which are a convolution of short-r ange and long-range ones. We show that when short-range correlations are dominant, extended states can appear in the spectrum. Introducing long-range correlations, the extended states, if any, are wiped out and localization is restored over the whole spectrum. Moreover, long-range correlations can either increase or decrease the localization length at the center of the band, which indicates a richer behavior than previously predicted.
We present numerical calculations of the electron effective mass in an interacting, ferromagnetic, two-dimensional electron system. We consider quantum interaction effects associated with the charge-density fluctuation induced many-body vertex correc tions. Our theory, which is free of adjustable parameters, reveals that the effective mass is suppressed (relative to its band value) in the strong coupling limit, in good agreement with the results of recent experimental measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا