ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper reports the results from three targeted searches of Milagro TeV sky maps: two extragalactic point source lists and one pulsar source list. The first extragalactic candidate list consists of 709 candidates selected from the Fermi-LAT 2FGL c atalog. The second extragalactic candidate list contains 31 candidates selected from the TeVCat source catalog that have been detected by imaging atmospheric Cherenkov telescopes (IACTs). In both extragalactic candidate lists Mkn 421 was the only source detected by Milagro. This paper presents the Milagro TeV flux for Mkn 421 and flux limits for the brighter Fermi-LAT extragalactic sources and for all TeVCat candidates. The pulsar list extends a previously published Milagro targeted search for Galactic sources. With the 32 new gamma-ray pulsars identified in 2FGL, the number of pulsars that are studied by both Fermi-LAT and Milagro is increased to 52. In this sample, we find that the probability of Milagro detecting a TeV emission coincident with a pulsar increases with the GeV flux observed by the Fermi-LAT in the energy range from 0.1 GeV to 100 GeV.
TeV flaring activity with time scales as short as tens of minutes and an orphan TeV flare have been observed from the blazar Markarian 421 (Mrk 421). The TeV emission from Mrk 421 is believed to be produced by leptonic synchrotron self-Compton (SSC) emission. In this scenario, correlations between the X-ray and the TeV fluxes are expected, TeV orphan flares are hardly explained and the activity (measured as duty cycle) of the source at TeV energies is expected to be equal or less than that observed in X-rays if only SSC is considered. To estimate the TeV duty cycle of Mrk 421 and to establish limits on its variability at different time scales, we continuously observed Mrk 421 with the Milagro observatory. Mrk 421 was detected by Milagro with a statistical significance of 7.1 standard deviations between 2005 September 21 and 2008 March 15. The observed spectrum is consistent with previous observations by VERITAS. We estimate the duty cycle of Mrk 421 for energies above 1 TeV for different hypothesis of the baseline flux and for different flare selections and we compare our results with the X-ray duty cycle estimated by Resconi et al. 2009. The robustness of the results is discussed.
118 - A. A. Abdo , B. T. Allen , T. Aune 2012
The Cygnus region is a very bright and complex portion of the TeV sky, host to unidentified sources and a diffuse excess with respect to conventional cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37 and MGRO J2031+41, ar e analyzed using Milagro data with a new technique, and their emission is tested under two different spectral assumptions: a power law and a power law with an exponential cutoff. The new analysis technique is based on an energy estimator that uses the fraction of photomultiplier tubes in the observatory that detect the extensive air shower. The photon spectrum is measured in the range 1 to 200 TeV using the last 3 years of Milagro data (2005-2008), with the detector in its final configuration. MGRO J2019+37 is detected with a significance of 12.3 standard deviations ($sigma$), and is better fit by a power law with an exponential cutoff than by a simple power law, with a probability $>98$% (F-test). The best-fitting parameters for the power law with exponential cutoff model are a normalization at 10 TeV of $7^{+5}_{-2}times10^{-10}$ $mathrm{s^{-1}: m^{-2}: TeV^{-1}}$, a spectral index of $2.0^{+0.5}_{-1.0}$ and a cutoff energy of $29^{+50}_{-16}$ TeV. MGRO J2031+41 is detected with a significance of 7.3$sigma$, with no evidence of a cutoff. The best-fitting parameters for a power law are a normalization of $2.4^{+0.6}_{-0.5}times10^{-10}$ $mathrm{s^{-1}: m^{-2}: TeV^{-1}}$ and a spectral index of $3.08^{+0.19}_{-0.17}$. The overall flux is subject to an $sim$30% systematic uncertainty. The systematic uncertainty on the power law indices is $sim$0.1. A comparison with previous results from TeV J2032+4130, MGRO J2031+41 and MGRO J2019+37 is also presented.
237 - A. A. Abdo , B. T. Allen , T. Aune 2011
The Crab Nebula was detected with the Milagro experiment at a statistical significance of 17 standard deviations over the lifetime of the experiment. The experiment was sensitive to approximately 100 GeV - 100 TeV gamma ray air showers by observing t he particle footprint reaching the ground. The fraction of detectors recording signals from photons at the ground is a suitable proxy for the energy of the primary particle and has been used to measure the photon energy spectrum of the Crab Nebula between ~1 and ~100 TeV. The TeV emission is believed to be caused by inverse-Compton up-scattering scattering of ambient photons by an energetic electron population. The location of a TeV steepening or cutoff in the energy spectrum reveals important details about the underlying electron population. We describe the experiment and the technique for distinguishing gamma-ray events from the much more-abundant hadronic events. We describe the calculation of the significance of the excess from the Crab and how the energy spectrum is fit. The fit is consistent with values measured by IACTs between 1 and 20 TeV. Fixing the spectral index to values that have been measured below 1 TeV by IACT experiments (2.4 to 2.6), the fit to the Milagro data suggests that Crab exhibits a spectral steepening or cutoff between about 20 to 40 TeV.
412 - A. A. Abdo , B. T. Allen , T. Aune 2009
Results are presented of a harmonic analysis of the large scale cosmic-ray anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy pro jections in right ascension generated by the fitting of thr ee harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field-of-view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for cosmic rays with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 +/- 0.02 stat. +/- 0.09 sys.)x10^(-3) in the direction of the Galactic North Pole centered at 189 degrees right ascension. We observe a steady increase in the magnitude of the signal over seven years.
We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly-optimized gamma-hadron separation and utilizes the full 8-year Milagro dataset. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10-50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang Pulsar Wind Nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا