ترغب بنشر مسار تعليمي؟ اضغط هنا

108 - G. Parisi , B. Seoane 2013
We show in numerical simulations that a system of two coupled replicas of a binary mixture of hard spheres undergoes a phase transition in equilibrium at a density slightly smaller than the glass transition density for an unreplicated system. This re sult is in agreement with the theories that predict that such a transition is a precursor of the standard ideal glass transition. The critical properties are compatible with those of an Ising system. The relations of this approach to the conventional approach based on configurational entropy are briefly discussed.
We show that a recent interpolative new proof of the Bohnenblust--Hille inequality, when suitably handled, recovers its best known constants. This seems to be unexpectedly surprising since the known interpolative approaches only provide constants hav ing exponential growth. This preprint is no longer an independent submission, it is now contained in the preprint arXiv 1310.2834.
Let $X$ be a sequence space and denote by $Z(X)$ the subset of $X$ formed by sequences having only a finite number of zero coordinates. We study algebraic properties of $Z(X)$ and show (among other results) that (for $p in [1,infty]$) $Z(ell_p)$ does not contain infinite dimensional closed subspaces. This solves an open question originally posed by R. M. Aron and V. I. Gurariy in 2003 on the linear structure of $Z(ell_infty)$. In addition to this, we also give a thorough analysis of the existing algebraic structures within the set $X setminus Z(X)$ and its algebraic genericity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا