ترغب بنشر مسار تعليمي؟ اضغط هنا

100 - B. Savage , T.-S. Kim , B. Keeney 2012
Ultraviolet observations of the QSO 3C 263 (zem = 0.652) with COS and FUSE reveal O VI absorption systems at z = 0.06342 and 0.14072 . WIYN multi-object spectrograph observations provide information about the galaxies associated with the absorbers. T he multi-phase system at z = 0.06342 traces cool photoionized gas and warm collisionally ionized gas associated with a L ~ 0.31L* compact spiral emission line galaxy with an impact parameter of 63 kpc. The cool photoionized gas in the absorber is well modeled with log U ~ -2.6, log N(H) ~17.8, log n(H) ~ -3.3 and [Si/H] = -0.14pm0.23. The collisionally ionized gas containing C IV and O VI probably arises in cooling shock heated transition temperature gas with log T ~ 5.5. The absorber is likely tracing circumgalactic gas enriched by gas ejected from the spiral emission line galaxy. The simple system at z = 0.14072 only contains O VI and broad and narrow H I. The O VI with b = 33.4pm11.9 km s-1 is likely associated with the broad H I {lambda}1215 absorption with b = 86.7pm15.4 km s-1. The difference in Doppler parameters implies the detection of a very large column of warm gas with log T = 5.61(+0.16, -0.25), log N(H) = 19.54(+0.26, -0.44) and [O/H] = -1.48 (+0.46, -0.26). This absorber is possibly associated with a 1.6L* absorption line galaxy with an impact parameter of 617 kpc although an origin in warm filament gas or in the halo of a fainter galaxy is more likely.
40 - B. Savage , N. Lehner , 2011
Observations of the QSO HE 0226-4110 (zem = 0.495) with the Cosmic Origins Spectrograph (COS) from 1134 to 1796 {AA} with a resolution of ~17 km s-1 and signal-to- noise (S/N) per resolution element of 20 to 40 are used to study the multi-phase absor ption system at z = 0.20701 containing O VI and Ne VIII. The system was previously studied with lower S/N observations with FUSE and STIS. The COS observations provide more reliable measures of the H I and metal lines present in the system and reveal the clear presence of broad Lyman {alpha} (BLA) absorption with b = 72(+13, -6) km s-1 and logN(H I) = 13.87pm0.08. Detecting BLAs associated with warm gas absorbers is crucial for determining the temperature, metallicity and total baryonic content of the absorbers. The BLA is probably recording the trace amount of thermally broadened H I in the collisionally ionized plasma with log T ~5.7 that also produces the O VI and Ne VIII absorption. The total hydrogen column in the collisionally ionized gas, logN(H) ~ 20.1, exceeds that in the cooler photoionized gas in the system by a factor of ~22. The oxygen abundance in the collisionally ionized gas is [O/H] = -0.89pm0.08pm0.07. The absorber probably occurs in the circumgalactic environment (halo) of a foreground L = 0.25L* disk galaxy with an impact parameter of 109h70-1 kpc identified by Mulchaey & Chen (2009).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا