ترغب بنشر مسار تعليمي؟ اضغط هنا

We present here the first spectroscopic and photometric analysis of the double-lined eclipsing binary containing the classical, first-overtone Cepheid OGLE-LMC-CEP-2532 (MACHO 81.8997.87). The system has an orbital period of 800 days and the Cepheid is pulsating with a period of 2.035 days. Using spectroscopic data from three high-class telescopes and photometry from three surveys spanning 7500 days we are able to derive the dynamical masses for both stars with an accuracy better than 3%. This makes the Cepheid in this system one of a few classical Cepheids with an accurate dynamical mass determination (M_1=3.90 +/- 0.10 M_sun). The companion is probably slightly less massive (3.82 +/- 0.10 M_sun), but may have the same mass within errors (M_2/M_1= 0.981 +/- 0.015). The system has an age of about 185 million years and the Cepheid is in a more advanced evolutionary stage. For the first time precise parameters are derived for both stars in this system. Due to the lack of the secondary eclipse for many years not much was known about the Cepheids companion. In our analysis we used extra information from the pulsations and the orbital solution from the radial velocity curve. The best model predicts a grazing secondary eclipse shallower than 1 mmag, hence undetectable in the data, about 370 days after the primary eclipse. The dynamical mass obtained here is the most accurate known for a first-overtone Cepheid and will contribute to the solution of the Cepheid mass discrepancy problem.
The status of our work on binary classical cepheid systems in the Large Magellanic Cloud is presented. We report on results from our follow up of two eclipsing binary cepheids OGLE-LMC-CEP-0227 and OGLE-LMC-CEP-1812. Here we presented for the first t ime confirmation that a third cepheid OGLE-LMC-CEP-2532 is a true eclipsing binary cepheid with a period of 800 days. Two other very good candidates for eclipsing binaries detected during OGLE-IV survey are also discussed.
We have obtained extensive high-quality spectroscopic observations of the OGLE-LMC-CEP-1718 eclipsing binary system in the Large Magellanic Cloud which Soszynski et al. (2008) had identified as a candidate system for containing two classical Cepheids in orbit. Our spectroscopic data clearly demonstrate binary motion of the Cepheids in a 413-day eccentric orbit, rendering this eclipsing binary system the first ever known to consist of two classical Cepheid variables. After disentangling the four different radial velocity variations in the system we present the orbital solution and the individual pulsational radial velocity curves of the Cepheids. We show that both Cepheids are extremely likely to be first overtone pulsators and determine their respective dynamical masses, which turn out to be equal to within 1.5 %. Since the secondary eclipse is not observed in the orbital light curve we cannot derive the individual radii of the Cepheids, but the sum of their radii derived from the photometry is consistent with overtone pulsation for both variables. The existence of two equal-mass Cepheids in a binary system having different pulsation periods (1.96 and 2.48 days, respectively) may pose an interesting challenge to stellar evolution and pulsation theories, and a more detailed study of this system using additional datasets should yield deeper insight about the physics of stellar evolution of Cepheid variables. Future analysis of the system using additional near-infrared photometry might also lead to a better understanding of the systematic uncertainties in current Baade-Wesselink techniques of distance determinations to Cepheid variables.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا