ترغب بنشر مسار تعليمي؟ اضغط هنا

A high-resolution projection and imaging system for ultracold atoms is implemented using a compound silicon and glass atom chip. The atom chip is metalized to enable magnetic trapping while glass regions enable high numerical aperture optical access to atoms residing in the magnetic trap about 100 microns below the chip surface. The atom chip serves as a wall of the vacuum system, which enables the use of commercial microscope components for projection and imaging. Holographically generated light patterns are used to optically slice a cigar-shaped magnetic trap into separate regions; this has been used to simultaneously generate up to four Bose-condensates. Using fluorescence techniques we have demonstrated in-trap imaging resolution down to 2.5 microns
The astrophysical site of the r-process is still uncertain, and a full exploration of the systematics of this process in terms of its dependence on nuclear properties from stability to the neutron drip-line within realistic stellar environments has s till to be undertaken. Sufficiently high neutron to seed ratios can only be obtained either in very neutron-rich low-entropy environments or moderately neutron-rich high-entropy environments, related to neutron star mergers (or jets of neutron star matter) and the high-entropy wind of core-collapse supernova explosions. As chemical evolution models seem to disfavor neutron star mergers, we focus here on high-entropy environments characterized by entropy $S$, electron abundance $Y_e$ and expansion velocity $V_{exp}$. We investigate the termination point of charged-particle reactions, and we define a maximum entropy $S_{final}$ for a given $V_{exp}$ and $Y_e$, beyond which the seed production of heavy elements fails due to the very small matter density. We then investigate whether an r-process subsequent to the charged-particle freeze-out can in principle be understood on the basis of the classical approach, which assumes a chemical equilibrium between neutron captures and photodisintegrations, possibly followed by a $beta$-flow equilibrium. In particular, we illustrate how long such a chemical equilibrium approximation holds, how the freeze-out from such conditions affects the abundance pattern, and which role the late capture of neutrons originating from $beta$-delayed neutron emission can play.
We have performed large-scale nucleosynthesis calculations within the high-entropy-wind (HEW) scenario of type II supernovae. The primary aim was to constrain the conditions for the production of the classical p-only isotopes of the light trans-Fe el ements. We find, however, that for electron fractions in the range 0.458 $le$ Y$_e$ $le$ 0.478, sizeable abundances of p-, s- and r-process nuclei between $^{64}$Zn and $^{98}$Ru are coproduced in the HEW at low entropies (S $le$ 100) by a primary charged-particle process after an $alpha$-rich freezeout. With the above Y$_e$ -- S correlation, most of the predicted isotopic abundance ratios within a given element (e.g. $^{64}$Zn(p)/$^{70}$Zn(r) or $^{92}$Mo(p)/$^{94}$Mo(p)), as well as of neighboring elements (e.g. $^{70}$Ge(s+p)/$^{74}$Se(p) or $^{74}$Se(p)/$^{78}$Kr(p)) agree with the observed Solar-System ratios. Taking the Mo isotopic chain as a particularly challenging example, we show that our HEW model can account for the production of all 7 stable isotopes, from p-only $^{92}$Mo, via s-only $^{96}$Mo up to r-only $^{100}$Mo. Furthermore, our model is able to reproduce the isotopic composition of Mo in presolar SiC X-grains.}
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا