ترغب بنشر مسار تعليمي؟ اضغط هنا

We carry out a systematic study of the X-ray emission from the active nuclei of the 0.02<z<0.7 2Jy sample, using Chandra and XMM-Newton observations. We combine our results with those from mid-IR, optical emission line and radio observations, and add them to those of the 3CRR sources. We show that the low-excitation objects in our samples redit{show signs} of radiatively inefficient accretion. We study the effect of the jet-related emission on the various luminosities, confirming that it is the main source of soft X-ray emission for our sources. We also find strong correlations between the accretion-related luminosities, and identify several sources whose optical classification is incompatible with their accretion properties. We derive the bolometric and jet kinetic luminosities for the samples and find a difference in the total Eddington rate between the low and high-excitation populations, with the former peaking at ~1 per cent and the latter at ~20 per cent Eddington. Our results are consistent with a simple Eddington switch when the effects of environment on radio luminosity and black hole mass calculations are considered. The apparent independence of jet kinetic power and radiative luminosity in the high-excitation population in our plots supports a model in which jet production and radiatively efficient accretion are not strongly correlated in high-excitation objects, though they have a common underlying mechanism.
We report the Chandra detection of a large-scale shock, on scales of 200 kpc, in the cluster surrounding the powerful radio galaxy 3C 444 (PKS 2211-17). Our 20-ks Chandra observation allows us to identify a clear surface brightness drop around the ou ter edge of the radio galaxy, which is likely to correspond to a spheroidal shock propagating into the intracluster medium. We measure a temperature jump across the surface brightness drop of a factor ~1.7, which corresponds to a Mach number of ~1.7. This is likely to be an underestimate due to the need to average over a fairly large region when measuring the temperature of the post-shock gas. We also detect clear cavities corresponding to the positions of the radio lobes, which is only the second such detection associated with an FRII radio galaxy. We estimate that the total energy transferred to the environment is at least 8.2 x 10^60 ergs, corresponding to a jet power of >2.2 x 10^45 ergs s^-1 (assuming a timescale based on the measured shock speed). We also compare the external pressure acting on the lobes with the internal pressure under various assumptions, and conclude that a significant contribution from protons is required.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا