ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent studies aimed at investigating artificial analogs of bacterial colonies have shown that low-density suspensions of self-propelled particles confined in two dimensions can assemble into finite aggregates that merge and split, but have a typical size that remains constant (living clusters). In this Letter we address the problem of the formation of living clusters and crystals of active particles in three dimensions. We study two systems: self-propelled particles interacting via a generic attractive potential and colloids that can move towards each other as a result of active agents (e.g. by molecular motors). In both cases fluid-like `living clusters form. We explain this general feature in terms of the balance between active forces and regression to thermodynamic equilibrium. This balance can be quantified in terms of a dimensionless number that allows us to collapse the observed clustering behaviour onto a universal curve. We also discuss how active motion affects the kinetics of crystal formation.
We propose a new strategy to improve the self-assembly properties of DNA-functionalised colloids. The problem that we address is that DNA-functionalised colloids typically crystallize in a narrow temperature window, if at all. The underlying reason i s the extreme sensitivity of DNA-mediated interactions to temperature or other physical control parameters. We propose to widen the window for colloidal crystallization by exploiting the competition between DNA linkages with different nucleotide sequences, which results in a temperature-dependent switching of the dominant bond type. Following such a strategy, we can decrease the temperature dependence of DNA-mediated self assembly to make systems that can crystallize in a wider temperature window than is possible with existing systems of DNA functionalised colloids. We report Monte Carlo simulations that show that the proposed strategy can indeed work in practice for real systems and specific, designable DNA sequences. Depending on the length ratio of the different DNA constructs, we find that the bond switching is either energetically driven (equal length or `symmetric DNA) or controlled by a combinatorial entropy gain (`asymmetric DNA), which results from the large number of possible binding partners for each DNA strand. We provide specific suggestions for the DNA sequences with which these effects can be achieved experimentally.
The prediction of the equation of state and the phase behavior of simple fluids (noble gases, carbon dioxide, benzene, methane, short alkane chains) and their mixtures by Monte Carlo computer simulation and analytic approximations based on thermodyna mic perturbation theory is discussed. Molecules are described by coarse grained (CG) models, where either the whole molecule (carbon dioxide, benzene, methane) or a group of a few successive CH_2 groups (in the case of alkanes) are lumped into an effective point particle. Interactions among these point particles are fitted by Lennard-Jones (LJ) potentials such that the vapor-liquid critical point of the fluid is reproduced in agreement with experiment; in the case of quadrupolar molecules a quadrupole-quadrupole interaction is included. These models are shown to provide a satisfactory description of the liquid-vapour phase diagram of these pure fluids. Investigations of mixtures, using the Lorentz-Berthelot (LB) combining rule, also produce satisfactory results if compared with experiment, while in some previous attempts (in which polar solvents were modelled without explicitly taking into account quadrupolar interaction), strong violations of the LB rules were required. For this reason, the present investigation is a step towards predictive modelling of polar mixtures at low computational cost. These very simple coarse-grained models of small molecules developed here should be useful e.g. for simulations of polymer solutions with such molecules as solvent.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا