ترغب بنشر مسار تعليمي؟ اضغط هنا

(Abridged) We study the impact of cluster environment on the evolution of spiral galaxies by examining their structure and kinematics. Rather than two-dimensional rotation curves, we observe complete velocity fields by placing three adjacent and para llel FORS2 MXU slits on each object, yielding several emission and absorption lines. The gas velocity fields are reconstructed and decomposed into circular rotation and irregular motions using kinemetry. To quantify irregularities in the gas kinematics, we define three parameters: sigma_{PA} (standard deviation of the kinematic position angle), Delta phi (the average misalignment between kinematic and photometric position angles) and k_{3,5} (squared sum of the higher order Fourier terms). Using local, undistorted galaxies from SINGS, these can be used to establish the regularity of the gas velocity fields. Here we present the analysis of 22 distant galaxies in the MS0451.6-0305 field with 11 members at z=0.54. In this sample we find both field (4 out of 8) and cluster (3 out of 4) galaxies with velocity fields that are both irregular and asymmetric. We show that these fractions are underestimates of the actual number of galaxies with irregular velocity fields. The values of the (ir)regularity parameters for cluster galaxies are not very different from those of the field galaxies, implying that there are isolated field galaxies that are as distorted as the cluster members. None of the deviations in our small sample correlate with photometric/structural properties like luminosity or disk scale length in a significant way. Our 3D-spectroscopic method successfully maps the velocity field of distant galaxies, enabling the importance and efficiency of cluster specific interactions to be assessed quantitatively.
We conducted a panoramic spectroscopic campaign with MOSCA at the Calar Alto observatory. We acquired spectra of more than 500 objects. Approximately 150 of these spectra were of galaxies that are members of six different clusters, which differ in in trinsic X-ray luminosity. The wavelength range allows us to quantify the star formation activity by using the OII and the Halpha lines. This activity is examined in terms of the large-scale environment expressed by the clustercentric distance of the galaxies as well as on local scales given by the spatial galaxy densities. A global suppression of star-formation is detected in the outskirts of clusters, at about 3Rvir. Galaxies with ongoing star-formation have similar activity, regardless of the environment. Therefore, the decline of the star-formation activity inside the investigated clusters is driven mainly by the significant change in the fraction of active versus passive populations. This suggests that the suppression of the star-formation activity occurs on short timescales. We detect a significant population of red star-forming galaxies whose colors are consistent with the red-sequence of passive galaxies. They appear to be in an intermediate evolutionary stage between active and passive types. Since a suppression of star-formation activity is measured at large clustercentric distances and low projected densities, purely cluster-specific phenomena cannot fully explain the observed trends. Therefore, as suggested by other studies, group preprocessing may play an important role in transforming galaxies before they enter into the cluster environment. Since models predict that a significant fraction of galaxies observed in the outskirts may have already transversed through the cluster center, the effects of ram-pressure stripping cannot be neglected. (ABRIDGED)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا