ترغب بنشر مسار تعليمي؟ اضغط هنا

We compare experimental resistivity data on Ga_{1-x}Mn_xAs films with theoretical calculations using a scaling theory for strongly disordered ferromagnets. All characteristic features of the temperature dependence of the resistivity can be quantitati vely understood through this approach as originating from the close vicinity of the metal-insulator transition. In particular, we find that the magnetic field induced changes in resistance cannot be explained within a mean-field treatment of the magnetic state, and that accounting for thermal fluctuations is crucial for a quantitative analysis. Similarly, while the non-interacting scaling theory is in reasonable agreement with the data, we find clear evidence in favor of interaction effects at low temperatures.
115 - M. Zhu , M. J. Wilson , B. L. Sheu 2007
We report magnetization and magetoresistance measurements in hybrid ferromagnetic metal/semiconductor heterostructures comprised of MnAs/(Ga,Mn)As bilayers. Our measurements show that the (metallic) MnAs and (semiconducting) (Ga,Mn)As layers are exch ange coupled, re- sulting in an exchange biasing of the magnetically softer (Ga,Mn)As layer that weakens with layer thickness. Magnetoresistance measurements in the current-perpendicular-to-the-plane geometry show a spin valve effect in these self-exchange biased bilayers. Similar measurements in MnAs/p- GaAs/(Ga,Mn)As trilayers show that the exchange coupling diminishes with spatial separation between the layers.
We develop a quantitatively predictive theory for impurity-band ferromagnetism in the low-doping regime of GaMnAs and compare with experimental measurements of a series of samples whose compositions span the transition from paramagnetic insulating to ferromagnetic conducting behavior. The theoretical Curie temperatures depend sensitively on the local fluctuations in the Mn-hole binding energy, which originates from disorder in the Mn distribution as well as the presence of As antisite defects. The experimentally-determined hopping energy at the Curie temperature is roughly constant over a series of samples whose conductivities vary more than 10^4 and whose hole concentrations vary more than 10^2. Thus in this regime the hopping energy is an excellent predictor of the Curie temperature for a sample, in agreement with the theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا