ترغب بنشر مسار تعليمي؟ اضغط هنا

The fraction of compact active galactic nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z > 2. This can be attributed to an increase in the angular sizes of the muas-scale cores or a decrease in the flux densities of the compact muas cores relative to that of the mas-scale components with increasing redshift, possibly arising from (1) the space-time curvature of an expanding Universe, (2) AGN evolution, (3) source selection biases, (4) scatter broadening in the ionized intergalactic medium (IGM) and intervening galaxies, or (5) gravitational lensing. We examine the frequency scaling of this redshift dependence of ISS to determine its origin, using data from a dual-frequency survey of ISS of 128 sources at 0 < z < 4. We present a novel method of analysis which accounts for selection effects in the source sample. We determine that the redshift dependence of ISS is partially linked to the steepening of source spectral indices ({alpha}^8.4_4.9) with redshift, caused either by selection biases or AGN evolution, coupled with weaker ISS in the {alpha}^8.4_4.9 < -0.4 sources. Selecting only the -0.4 < {alpha}^8.4_4.9 < 0.4 sources, we find that the redshift dependence of ISS is still significant, but is not significantly steeper than the expected (1+z)^0.5 scaling of source angular sizes due to cosmological expansion for a brightness temperature and flux-limited sample of sources. We find no significant evidence for scatter broadening in the IGM, ruling it out as the main cause of the redshift dependence of ISS. We obtain an upper limit to IGM scatter broadening of < 110muas at 4.9 GHz with 99% confidence for all lines of sight, and as low as < 8muas for sight-lines to the most compact, sim 10muas sources.
The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in Interstellar Scintillation (ISS) for sources at redshifts z > 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources, relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the Intergalactic Medium (IGM), in excess of the expected (1+z)^0.5 angular diameter scaling of brightness temperature limited sources due to cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a sample of 140 compact, flat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H-alpha intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15 to 3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at spectral indices of < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of 3 decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا