ترغب بنشر مسار تعليمي؟ اضغط هنا

It was observed by Tod and later by Dunajski and Tod that the Boyer-Finley (BF) and the dispersionless Kadomtsev-Petviashvili (dKP) equations possess solutions whose level surfaces are central quadrics in the space of independent variables (the so-ca lled central quadric ansatz). It was demonstrated that generic solutions of this type are described by Painleve equations PIII and PII, respectively. The aim of our paper is threefold: -- Based on the method of hydrodynamic reductions, we classify integrable models possessing the central quadric ansatz. This leads to the five canonical forms (including BF and dKP). -- Applying the central quadric ansatz to each of the five canonical forms, we obtain all Painleve equations PI - PVI, with PVI corresponding to the generic case of our classification. -- We argue that solutions coming from the central quadric ansatz constitute a subclass of two-phase solutions provided by the method of hydrodynamic reductions.
53 - B. Huard 2007
Non-Gaussian fluctuations of the electrical current can be detected with a Josephson junction placed on-chip with the noise source. We present preliminary measurements with an NIS junction as a noise source, and a Josephson junction in the thermal es cape regime as a noise detector. It is shown that the Josephson junction detects not only the average noise, which manifests itself as an increased effective temperature, but also the noise asymmetry. A theoretical description of the thermal escape of a Josephson junction in presence of noise with a non-zero third cumulant is presented, together with numerical simulations when the noise source is a tunnel junction with Poisson noise. Comparison between experiment and theory is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا