ترغب بنشر مسار تعليمي؟ اضغط هنا

To determine the physical parameters of a transiting planet and its host star from photometric and spectroscopic analysis, it is essential to independently measure the stellar mass. This is often achieved by the use of evolutionary tracks and isochro nes, but the mass result is only as reliable as the models used. The recent paper by Torres et al (2009) showed that accurate values for stellar masses and radii could be obtained from a calibration using T_eff, log g and [Fe/H]. We investigate whether a similarly good calibration can be obtained by substituting log rho - the fundamental parameter measured for the host star of a transiting planet - for log g, and apply this to star-exoplanet systems. We perform a polynomial fit to stellar binary data provided in Torres et al (2009) to obtain the stellar mass and radius as functions of T_eff, log rho and [Fe/H], with uncertainties on the fit produced from a Monte Carlo analysis. We apply the resulting equations to measurements for seventeen SuperWASP host stars, and also demonstrate the application of the calibration in a Markov Chain Monte Carlo analysis to obtain accurate system parameters where spectroscopic estimates of effective stellar temperature and metallicity are available. We show that the calibration using log rho produces accurate values for the stellar masses and radii; we obtain masses and radii of the SuperWASP stars in good agreement with isochrone analysis results. We ascertain that the mass calibration is robust against uncertainties resulting from poor photometry, although a good estimate of stellar radius requires good-quality transit light curve to determine the duration of ingress and egress.
The Wide Angle Search for Planets (WASP) photometrically surveys a large number of nearby stars to uncover candidate extrasolar planet systems by virtue of small-amplitude lightcurve dips on a < 5-day timescale typical of the ``Hot-Jupiters. Observat ions with the SuperWASP-North instrument between April and September 2004 produced a rich photometric dataset of some 1.3 billion datapoints from 6.7 million stars. Our custom-built data acquisition and processing system produces ~0.02 mag photometric precision at V=13. We present the transit-candidates in the 03h-06h RA range. Of 141,895 lightcurves with sufficient sampling to provide adequate coverage, 2688 show statistically significant transit-like periodicities. Of these, 44 pass visual inspection of the lightcurve, of which 24 are removed through a set of cuts on the statistical significance of artefacts. All but 4 of the remaining 20 objects are removed when prior information at higher spatial-resolution from existing catalogues is taken into account. Of the four candidates remaining, one is considered a good candidate for follow-up observations with three further second-priority targets. We provide detailed information on these candidates, as well as a selection of the false-positives and astrophysical false-alarms that were eliminated, and discuss briefly the impact of sampling on our results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا