ترغب بنشر مسار تعليمي؟ اضغط هنا

For a general subcritical second-order elliptic operator $P$ in a domain $Omega subset mathbb{R}^n$ (or noncompact manifold), we construct Hardy-weight $W$ which is optimal in the following sense. The operator $P - lambda W$ is subcritical in $Omega$ for all $lambda < 1$, null-critical in $Omega$ for $lambda = 1$, and supercritical near any neighborhood of infinity in $Omega$ for any $lambda > 1$. Moreover, if $P$ is symmetric and $W>0$, then the spectrum and the essential spectrum of $W^{-1}P$ are equal to $[1,infty)$, and the corresponding Agmon metric is complete. Our method is based on the theory of positive solutions and applies to both symmetric and nonsymmetric operators. The constructed Hardy-weight is given by an explicit simple formula involving two distinct positive solutions of the equation $Pu=0$, the existence of which depends on the subcriticality of $P$ in $Omega$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا