ترغب بنشر مسار تعليمي؟ اضغط هنا

We present near-IR spectroscopy of red supergiant (RSG) stars in NGC 6822, obtained with the new VLT-KMOS instrument. From comparisons with model spectra in the J-band we determine the metallicity of 11 RSGs, finding a mean value of [Z] = -0.52 $pm$ 0.21 which agrees well with previous abundance studies of young stars and HII regions. We also find an indication for a low-significance abundance gradient within the central 1 kpc. We compare our results with those derived from older stellar populations and investigate the difference using a simple chemical evolution model. By comparing the physical properties determined for RSGs in NGC 6822 with those derived using the same technique in the Galaxy and the Magellanic Clouds, we show that there appears to be no significant temperature variation of RSGs with respect to metallicity, in contrast with recent evolutionary models.
We use N-body simulations of star cluster evolution to explore the hypothesis that short-lived radioactive isotopes found in meteorites, such as 26-Al, were delivered to the Suns protoplanetary disc from a supernova at the epoch of Solar System forma tion. We cover a range of star cluster formation parameter space and model both clusters with primordial substructure, and those with smooth profiles. We also adopt different initial virial ratios - from cool, collapsing clusters to warm, expanding associations. In each cluster we place the same stellar population; the clusters each have 2100 stars, and contain one massive 25M_Sun star which is expected to explode as a supernova at about 6.6Myr. We determine the number of Solar (G)-type stars that are within 0.1 - 0.3pc of the 25M_Sun star at the time of the supernova, which is the distance required to enrich the protoplanetary disc with the 26-Al abundances found in meteorites. We then determine how many of these G-dwarfs are unperturbed `singletons; stars which are never in close binaries, nor suffer sub-100au encounters, and which also do not suffer strong dynamical perturbations. The evolution of a suite of twenty initially identical clusters is highly stochastic, with the supernova enriching over 10 G-dwarfs in some clusters, and none at all in others. Typically only ~25 per cent of clusters contain enriched, unperturbed singletons, and usually only 1 - 2 per cluster (from a total of 96 G-dwarfs in each cluster). The initial conditions for star formation do not strongly affect the results, although a higher fraction of supervirial (expanding) clusters would contain enriched G-dwarfs if the supernova occurred earlier than 6.6Myr. If we sum together simulations with identical initial conditions, then ~1 per cent of all G-dwarfs in our simulations are enriched, unperturbed singletons.
We follow the near radial infall of a prolate cloud onto a 4 x 10^6 Msun supermassive black hole in the Galactic Centre using smoothed particle hydrodynamics (SPH). We show that a prolate cloud oriented perpendicular to its orbital plane naturally pr oduces a spread in angular momenta in the gas which can translate into misaligned discs as is seen in the young stars orbiting Sagittarius A*. A turbulent or otherwise highly structured cloud is necessary to avoid cancelling too much angular momentum through shocks at closest approach. Our standard model of a 2 x 10^4 Msun gas cloud brought about the formation of a disc within 0.3 pc from the black hole and a larger, misaligned streamer at 0.5 pc. A total of 1.5 x 10^4 Msun of gas formed these structures. Our exploration of the simulation parameter space showed that when star formation occurred, it resulted in top-heavy IMFs with stars on eccentric orbits with semi-major axes 0.02 to 0.3 pc and inclinations following the gas discs and streamers. We suggest that the single event of an infalling prolate cloud can explain the occurrence of multiple misaligned discs of young stars.
A large population of fragile, wide (> 1000 AU) binary systems exists in the Galactic field and halo. These wide binary stars cannot be primordial because of the high stellar density in star forming regions, while formation by capture in the Galactic field is highly improbable. We propose that these binary systems were formed during the dissolution phase of star clusters (see Kouwenhoven et al. 2010, for details). Stars escaping from a dissolving star cluster can have very similar velocities, which can lead to the formation of a wide binary systems. We carry out N-body simulations to test this hypothesis. The results indicate that this mechanism explains the origin of wide binary systems in the Galaxy. The resulting wide binary fraction and semi-major axis distribution depend on the initial conditions of the dissolving star cluster, while the distributions in eccentricity and mass ratio are universal. Finally, since most stars are formed in (relatively tight) primordial binaries, we predict that a large fraction of the wide binary stars are in fact higher-order multiple systems.
We present simulated J-band spectroscopy of red giants and supergiants with a 42m European Extremely Large Telescope (E-ELT), using tools developed toward the EAGLE Phase A instrument study. The simulated spectra are used to demonstrate the validity of the 1.15-1.22 micron region to recover accurate stellar metallicities from Solar and metal-poor (one tenth Solar) spectral templates. From tests at spectral resolving powers of four and ten thousand, we require continuum signal-to-noise ratios in excess of 50 (per two-pixel resolution element) to recover the input metallicity to within 0.1 dex. We highlight the potential of direct estimates of stellar metallicites (over the range -1<[Fe/H]<0) of red giants with the E-ELT, reaching out to distances of ~5 Mpc for stars near the tip of the red giant branch. The same simulations are also used to illustrate the potential for quantitative spectroscopy of red supergiants beyond the Local Volume to tens of Mpc. Calcium triplet observations in the I-band are also simulated to provide a comparison with contemporary techniques. Assuming the EAGLE instrument parameters and simulated performances from adaptive optics, the J-band method is more sensitive in terms of recovering metallicity estimates for a given target. This appears very promising for ELT studies of red giants and supergiants, offering a direct metallicity tracer at a wavelength which is less afffected by extinction than shortward diagnostics and, via adaptive optics, with better image quality.
We show that collisions with stellar--mass black holes can partially explain the absence of bright giant stars in the Galactic Centre, first noted by Genzel et al, 1996. We show that the missing objects are low--mass giants and AGB stars in the range 1-3 M$_{odot}$. Using detailed stellar evolution calculations, we find that to prevent these objects from evolving to become visible in the depleted K bands, we require that they suffer collisions on the red giant branch, and we calculate the fractional envelope mass losses required. Using a combination of Smoothed Particle Hydrodynamic calculations, restricted three--body analysis and Monte Carlo simulations, we compute the expected collision rates between giants and black holes, and between giants and main--sequence stars in the Galactic Centre. We show that collisions can plausibly explain the missing giants in the $10.5<K<12$ band. However, depleting the brighter ($K<10.5$) objects out to the required radius would require a large population of black hole impactors which would in turn deplete the $10.5<K<12$ giants in a region much larger than is observed. We conclude that collisions with stellar--mass black holes cannot account for the depletion of the very brightest giants, and we use our results to place limits on the population of stellar--mass black holes in the Galactic Centre.
98 - E. B. Davies , John Weir 2008
In this paper we study a family of operators dependent on a small parameter $epsilon > 0$, which arise in a problem in fluid mechanics. We show that the spectra of these operators converge to N as $epsilon to 0$, even though, for fixed $epsilon > 0$, the eigenvalue asymptotics are quadratic.
We have computed the galactic trajectories of twelve hypervelocity stars (HVSs) under the assumption that they originated in the Galactic Centre. We show that eight of these twelve stars are bound to the Galaxy. We consider the subsequent trajectorie s of the bound stars to compute their characteristic orbital period, which is 2 Gyr. All eight bound stars are moving away from the centre of the Galaxy, which implies that the stars lifetimes are less than 2 Gyr. We thus infer that the observed HVSs are massive main sequence stars, rather than blue horizontal branch stars. The observations suggest that blue HVSs are ejected from the Galactic Centre roughly every 15 Myr. This is consistent with the observed population of blue stars in extremely tight orbits round the central super-massive black hole (SMBH), the so-called S-stars, if we assume that the HVSs are produced by the breakup of binaries. One of the stars in such a binary is ejected at high velocities to form a HVS; the other remains bound to the SMBH as an S-star. We further show that the one high-velocity system observed to be moving towards the Galactic Centre, SDSS J172226.55+594155.9, could not have originated in the Galactic Centre; rather, we identify it as a halo object.
We present the results of Monte Carlo mass-loss predictions for massive stars covering a wide range of stellar parameters. We critically test our predictions against a range of observed mass-loss rates -- in light of the recent discussions on wind cl umping. We also present a model to compute the clumping-induced polarimetric variability of hot stars and we compare this with observations of Luminous Blue Variables, for which polarimetric variability is larger than for O and Wolf-Rayet stars. Luminous Blue Variables comprise an ideal testbed for studies of wind clumping and wind geometry, as well as for wind strength calculations, and we propose they may be direct supernova progenitors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا