ترغب بنشر مسار تعليمي؟ اضغط هنا

We present VLT VIMOS, Keck DEIMOS and Keck LRIS multi-object spectra of 367 sources in the field of the z ~ 3.09 protocluster SSA22. Sources are spectroscopically classified via template matching, allowing new identifications for 206 extragalactic so urces, including 36 z > 2 Lyman-break galaxies (LBGs) and Lyman-alpha emitters (LAEs), 8 protocluster members, and 94 X-ray sources from the ~ 400 ks Chandra deep survey of SSA22. Additionally, in the area covered by our study, we have increased by ~ 4, 13, and 6 times the number of reliable redshifts of sources at 1.0 < z < 2.0, at z > 3.4, and with X-Ray emission, respectively. We compare our results with past spectroscopic surveys of SSA22 to investigate the completeness of the LBGs and the X-Ray properties of the new spectroscopically-classified sources in the SSA22 field.
We present results from three nearly simultaneous NuSTAR and Chandra monitoring observations between 2012 Sep 2 and 2012 Nov 16 of local star-forming galaxy NGC 253. The 3-40 keV NuSTAR intensity of the inner 20 arcsec (~400 pc) nuclear region varied by a factor of ~2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L2-10 keV ~ few x 10^39 erg/s) point source ~1 arcsec from the dynamical center of the galaxy (within the 3sigma positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies >3 keV. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (NH ~ 1.6 x 10^23 cm^-2) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not AGN. A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center (~0.4 arcsec); however, this source was offset from the 2012 source position by ~1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is >>99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 keV) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum indicate that the 2003 source is a better AGN candidate than any of the sources detected in our 2012 campaign; however, we were unable to rule out a ULX nature for this source. Future NuSTAR and Chandra monitoring would be well equipped to break the degeneracy between the AGN and ULX nature of the 2003 source, if again caught in a high state.
We present results from a ~100 ks Chandra observation of the 2QZ Cluster 1004+00 structure at z = 2.23 (hereafter, 2QZ Clus). 2QZ Clus was originally identified as an overdensity of four optically-selected QSOs at z = 2.23 within a 15x15 arcmin^2 reg ion. Narrow-band imaging in the near-IR revealed that the structure contains an additional overdensity of 22 z = 2.23 Halpha-emitting galaxies (HAEs), resulting in 23 unique z = 2.23 HAEs/QSOs. Our Chandra observations reveal that 3 HAEs in addition to the 4 QSOs harbor powerfully accreting supermassive black holes (SMBHs), with 2-10 keV luminosities of ~(8-60) x 10^43 ergs/s and X-ray spectral slopes consistent with unobscured AGN. Using a large comparison sample of 210 HAEs in Chandra-COSMOS (C-COSMOS), we find suggestive evidence that the AGN fraction increases with local HAE galaxy density. The 2QZ Clus HAEs reside in a moderately overdense environment (a factor of ~2 times over the field), and after excluding optically-selected QSOs, we find the AGN fraction is a factor of ~3.5^+3.8_-2.2 times higher than C-COSMOS HAEs in similar environments. Using stacking analyses of the Chandra data and Herschel SPIRE observations at 250 um, we respectively estimate mean SMBH accretion rates (Mdot) and star-formation rates (SFRs) for the 2QZ Clus and C-COSMOS samples. We find that the mean 2QZ Clus HAE stacked 2-10 keV luminosity is QSO-like (~6-10 x 10^43 ergs/s), and the implied Mdot/SFR sim (1.6-3.2) x10^-3 is broadly consistent with the local MBH/M* relation and z ~ 2 X-ray selected AGN. The C-COSMOS HAEs are on average an order of magnitude less X-ray luminous and have Mdot/SFR sim (0.2-0.4) x10^-3, comparable to z ~ 1-2 star-forming galaxies with similar mean X-ray luminosities. We estimate that a periodic QSO phase with duty cycle ~2-8% would be sufficient to bring the star-forming galaxies onto the local MBH/M* relation.
We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z~0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a s ubset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the ~4 Ms CDF-S and ~2 Ms CDF-N and z = 0.1-0.6 in the ~250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keV to B-band luminosity ratio (L_X/L_B proportional to [1 + z]^1.2) since z~1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z~1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of ~1.4-2.6 times larger than the average radiative cooling power from hot gas over the redshift range z~0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.
We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D < 60 Mpc and low Galactic column densities of N_H < 5 X 10^20 cm^-2. The LIRGs in our sample have total infrared (8-1000um) luminos ities in the range of L_IR ~ (1-8) X 10^11 L_sol. The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei (AGNs) and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star-formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M*) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (LX) traces the combined emission from high mass X-ray binaries (HMXBs) and low mass X-ray binaries (LMXBs), and that the power output from these components are linearly correlated with SFR and M*, respectively, we constrain the relation LX = alpha M* + beta SFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of alpha = (9.05 +/- 0.37) X 10^28 ergs s^-1 Msol^-1 and beta = (1.62 +/- 0.22) X 10^39 ergs s^-1 (Msol yr^-1)^-1. This scaling provides a more physically meaningful estimate of LX, with ~0.1-0.2 dex less scatter, than a direct linear scaling with SFR (abridged).
210 - J. E. Geach 2009
We present the results of a 400ks Chandra survey of 29 extended Ly-alpha emitting nebulae (Ly-alpha Blobs, LABs) in the z=3.09 proto-cluster in the SSA22 field. We detect luminous X-ray counterparts in five LABs, implying a large fraction of active g alactic nuclei (AGN) in LABs, f_AGN = 17% down to L_2-32keV ~ 10^44 erg/s. All of the AGN appear to be heavily obscured, with spectral indices implying obscuring column densities of N_H > 10^23 cm^-2. The AGN fraction should be considered a lower limit, since several more LABs not detected with Chandra show AGN signatures in their mid-infrared emission. We show that the UV luminosities of the AGN are easily capable of powering the extended Ly-alpha emission via photo-ionization alone. When combined with the UV flux from a starburst component, and energy deposited by mechanical feedback, we demonstrate that heating by a central source, rather than gravitational cooling is the most likely power source of LABs. We argue that all LABs could be powered in this manner, but that the luminous host galaxies are often just below the sensitivity limits of current instrumentation, or are heavily obscured. No individual LABs show evidence for extended X-ray emission, and a stack equivalent to a >9Ms exposure of an average LAB also yields no statistical detection of a diffuse X-ray component. The resulting diffuse X-ray/Ly-alpha luminosity limit implies there is no hot (T>10^7 K) gas component in these halos, and also rules out inverse Compton scattering of cosmic microwave background photons, or local far-infrared photons, as a viable power source for LABs.
We present results from a new ultra-deep 400 ks Chandra observation of the SSA22 protocluster at z = 3.09. We have studied the X-ray properties of 234 z ~ 3 Lyman break galaxies (LBGs; protocluster and field) and 158 z = 3.09 Ly-alpha emitters (LAEs) in SSA22 to measure the influence of the high-density protocluster environment on the accretion activity of supermassive black holes (SMBHs) in these UV-selected star forming populations. We detect individually X-ray emission from active galactic nuclei (AGNs) in six LBGs and five LAEs; due to small overlap between the LBG and LAE source population, ten of these sources are unique. At least six and potentially eight of these sources are members of the protocluster. These sources have rest-frame 8-32 keV luminosities in the range of L_8-32 keV = (3-50) X 10^{43} ergs/s and an average observed-frame 2-8 keV to 0.5-2 keV band-ratio of ~0.8 (mean effective photon index of Gamma_eff = 1.1), suggesting significant absorption columns of N_H > 10^{22}-10^{24} cm^{-2}. We find that the fraction of LBGs and LAEs in the z = 3.09 protocluster harboring an AGN with L_8-32 keV > 3 X 10^{43} ergs/s is 9.5^{+12.7}_{-6.1}% and 5.1^{+6.8}_{-3.3}%, respectively. These AGN fractions are somewhat larger (by a mean factor of 6.1^{+10.3}_{-3.6}; significant at the 95% confidence level) than z ~ 3 sources found in lower-density field environments. Theoretical models imply that these results may be due to the presence of more actively growing and/or massive SMBHs in LBGs and LAEs within the protocluster compared to the field. Such a result is expected in a scenario where enhanced merger activity in the protocluster drives accelerated galaxy and SMBH growth at z > 2-3. (abridged)
We present an analysis of 109 moderate-luminosity (41.9 < Log L{0.5-8.0 keV} < 43.7) AGN in the Extended Chandra Deep Field-South survey, which is drawn from 5,549 galaxies from the COMBO-17 and GEMS surveys having 0.4 < z < 1.1. These obscured or op tically-weak AGN facilitate the study of their host galaxies since the AGN provide an insubstantial amount of contamination to the galaxy light. We find that the color distribution of AGN host galaxies is highly dependent upon (1) the strong color-evolution of luminous (M_V < -20.7) galaxies, and (2) the influence of ~10 Mpc scale structures. When excluding galaxies within the redshift range 0.63 < z < 0.76, a regime dominated by sources in large-scale structures at z=0.67 and z=0.73, we observe a bimodality in the host galaxy colors. Galaxies hosting AGN at z > 0.8 preferentially have bluer (rest-frame U-V < 0.7) colors than their z <~ 0.6 counterparts (many of which fall along the red sequence). The fraction of galaxies hosting AGN peaks in the ``green valley (0.5 < U-V < 1.0); this is primarily due to enhanced AGN activity in the redshift interval 0.63 < z < 0.76. The AGN fraction in this redshift and color interval is 12.8% (compared to its `field value of 7.8%) and reaches a maximum of 14.8% at U-V~0.8. We further find that blue, bulge-dominated (Sersic index n>2.5) galaxies have the highest fraction of AGN (21%) in our sample. We explore the scenario that the evolution of AGN hosts is driven by galaxy mergers and illustrate that an accurate assessment requires a larger area survey since only three hosts may be undergoing a merger with timescales <1 Gyr following a starburst phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا