ترغب بنشر مسار تعليمي؟ اضغط هنا

We use a stacking technique to measure the average HI content of a volume-limited sample of 1871 AGN host galaxies from a parent sample of galaxies selected from the SDSS and GALEX imaging surveys with stellar masses greater than 10^10 M_sun and reds hifts in the range 0.025<z<0.05. HI data are available from the Arecibo Legacy Fast ALFA (ALFALFA) survey. In previous work, we found that the HI gas fraction in galaxies correlates most strongly with the combination of optical/UV colour and stellar surface mass density. We therefore build a control sample of non-AGN matched to the AGN hosts in these two properties. We study trends in HI gas mass fraction (M(HI)/M_*), where M_* is the stellar mass) as a function of black hole accretion rate indicator L[OIII]/M(BH). We find no significant difference in HI content between AGN and control samples at all values of black hole accretion rate probed by the galaxies in our sample. This indicates that AGN do not influence the large-scale gaseous properties of galaxies in the local Universe. We have studied the variation in HI mass fraction with black hole accretion rate in the blue and red galaxy populations. In the blue population, the HI gas fraction is independent of accretion rate, indicating that accretion is not sensitive to the properties of the interstellar medium of the galaxy on large scales. However, in the red population accretion rate and gas fraction do correlate. The measured gas fractions in this population are not too different from the ones expected from a stellar mass loss origin, implying that the fuel supply in the red AGN population could be a mixture of mass loss from stars and gas present in disks.
The GALEX Arecibo SDSS Survey (GASS) is an ambitious program designed to investigate the cold gas properties of massive galaxies, a challenging population for HI studies. Using the Arecibo radio telescope, GASS is gathering high-quality HI-line spect ra for an unbiased sample of ~1000 galaxies with stellar masses greater than 10^10 Msun and redshifts 0.025 < z < 0.05, uniformly selected from the SDSS spectroscopic and GALEX imaging surveys. The galaxies are observed until detected or until a low gas mass fraction limit (1.5-5%) is reached. We present initial results based on the first Data Release, which consists of ~20% of the final GASS sample. We use this data set to explore the main scaling relations of HI gas fraction with galaxy structure and NUV-r colour, and show our best fit plane describing the relation between gas fraction, stellar mass surface density and NUV-r colour. Interesting outliers from this plane include gas-rich red sequence galaxies that may be in the process of regrowing their disks, as well as blue, but gas-poor spirals.
An on-going Arecibo line search between 1.1 and 10 GHz of the prototypical starburst/megamaser galaxy, Arp 220, has revealed a spectrum rich in molecular transitions. These include the ``pre-biotic molecules: methanimine (CH$_{2}$NH) in emission, thr ee $v_{2}=1$ direct l-type absorption lines of HCN, and an absorption feature likely to be from either $^{18}$OH or formic acid (HCOOH). In addition, we report the detection of two, possibly three, transitions of $lambda$4-cm excited OH not previously detected in Arp~220 which are seen in absorption, and a possible absorption feature from the 6.668-GHz line of methanol. This marks the first distant extragalactic detection of methanimine, a pre-biotic molecule. Also, if confirmed, the possible methanol absorption line presented here would represent the first extragalactic detection of methanol at a distance further than 10 Mpc. In addition, the strong, previously undetected, cm-wave HCN $v_{2}=1$ direct l-type lines will aid the study of dense molecular gas and active star-forming regions in this starburst galaxy.
The GALEX Arecibo SDSS Survey (GASS) is a large targeted survey that started at Arecibo in March 2008. GASS is designed to measure the neutral hydrogen content of ~1000 massive galaxies (with stellar mass Mstar > 10^10 Msun) at redshift 0.025<z<0.05, uniformly selected from the SDSS spectroscopic and GALEX imaging surveys. Our selected mass range straddles the recently identified transition mass (Mstar ~3x10^10 Msun) above which galaxies show a marked decrease in their present to past-averaged star formation rates. GASS will produce the first statistically significant sample of massive transition galaxies with homogeneously measured stellar masses, star formation rates and gas properties. The analysis of this sample will allow us to investigate if and how the cold gas responds to a variety of different physical conditions in the galaxy, thus yielding insights on the physical processes responsible for the transition between blue, star-forming and red, passively evolving galaxies. GASS will be of considerably legacy value not only in isolation but also by complementing ongoing HI-selected surveys.
The Arecibo L-band Feed Array Zone of Avoidance Survey (ALFA ZOA) will map 1350-1800 square degrees at low Galactic latitude, providing HI spectra for galaxies in regions of the sky where our knowledge of local large scale structure remains incomplet e, owing to obscuration from dust and high stellar confusion near the Galactic plane. Because of these effects, a substantial fraction of the galaxies detected in the survey will have no optical or infrared counterparts. However, near infrared follow up observations of ALFA ZOA sources found in regions of lowest obscuration could reveal whether some of these sources could be objects in which little or no star formation has taken place (dark galaxies). We present here the results of ALFA ZOA precursor observations on two patches of sky totaling 140 square degrees (near l=40 degrees, and l=192 degrees). We have measured HI parameters for detections from these observations, and cross-correlated with the NASA/IPAC Extragalactic Database (NED). A significant fraction of the objects have never been detected at any wavelength. For those galaxies that have been previously detected, a significant fraction have no previously known redshift, and no previous HI detection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا