ترغب بنشر مسار تعليمي؟ اضغط هنا

77 - N. Arav , D. Edmonds , B. Borguet 2012
Active Galactic Nuclei often show evidence of photoionized outflows. A major uncertainty in models for these outflows is the distance ($R$) to the gas from the central black hole. In this paper we use the HST/COS data from a massive multi-wavelength monitoring campaign on the bright Seyfert I galaxy Mrk 509, in combination with archival HST/STIS data, to constrain the location of the various kinematic components of the outflow. We compare the expected response of the photoionized gas to changes in ionizing flux with the changes measured in the data using the following steps: 1) We compare the column densities of each kinematic component measured in the 2001 STIS data with those measured in the 2009 COS data; 2) We use time-dependent photionization calculations with a set of simulated lightcurves to put statistical upper limits on the hydrogen number density that are consistent with the observed small changes in the ionic column densities; 3) From the upper limit on the number density, we calculate a lower limit on the distance to the absorber from the central source via the prior determination of the ionization parameter. Our method offers two improvements on traditional timescale analysis. First, we account for the physical behavior of AGN lightcurves. Second, our analysis accounts for the quality of measurement in cases where no changes are observed in the absorption troughs. The very small variations in trough ionic column densities (mostly consistent with no change) between the 2001 and 2009 epochs allow us to put statistical lower limits on the distance between 100--200 pc for all the major UV absorption components at a confidence level of 99%. These results are mainly consistent with the independent distance estimates derived for the warm absorbers from the simultaneous X-ray spectra.
We present new optical circular polarization measurements with typical uncertainties < 0.1% for a sample of 21 quasars. All but two objects have null circular polarization. We use this result to constrain the polarization due to photon-pseudoscalar m ixing along the line of sight. We detect significant (> 3 sigma) circular polarization in two blazars with high linear polarization and discuss the implications of this result for quasar physics. In particular, the recorded polarization degrees may be indicative of magnetic fields as strong as 1 kG or a significant contribution of inverse Compton scattering to the optical continuum.
On the basis of 16 years of spectroscopic observations of the four components of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet to visible rest-frame spectral range, we analyze the spectral differenc es observed in the P Cygni-type line profiles and have used the microlensing effect to derive new clues to the BAL profile formation. We confirm that the spectral differences observed in component D can be attributed to a microlensing effect lasting at least a decade. We show that microlensing magnifies the continuum source in image D, leaving the emission line region essentially unaffected. We interpret the differences seen in the absorption profiles of component D as the result of an emission line superimposed onto a nearly black absorption profile. We also find that the continuum source and a part of the broad emission line region are likely de-magnified in component C, while components A and B are not affected by microlensing. We show that microlensing of the continuum source in component D has a chromatic dependence compatible with the thermal continuum emission of a standard Shakura-Sunyaev accretion disk. Using a simple decomposition method to separate the part of the line profiles affected by microlensing and coming from a compact region from the part unaffected by this effect and coming from a larger region, we disentangle the true absorption line profiles from the true emission line profiles. The extracted emission line profiles appear double-peaked, suggesting that the emission is occulted by a strong absorber, narrower in velocity than the full absorption profile, and emitting little by itself. We propose that the outflow around H1413+117 is constituted by a high-velocity polar flow and a denser, lower velocity disk seen nearly edge-on.
We investigate correlations between the direction of the optical linear polarization and the orientation of the host galaxy/extended emission for type1 and type2 radio-loud and radio-quiet quasars. We have used high resolution Hubble Space Telescope data and a deconvolution process to obtain a good determination of the host galaxy/extended emission (EE) position angle. With these new measurements and a compilation of data from the literature, we find a significant correlation, different for type1 and type2 objects, between the linear polarization position angle and the orientation of the EE, suggesting scattering by an extended UV/blue region in both types of objects. Our observations support the extension of the Unification Model to the higher luminosity AGNs like the quasars, assuming a two component scattering model.
We investigate correlations between the optical linear polarization position angle and the orientation of the host galaxy/extended emission of Type 1 and Type 2 Radio-Loud (RL) and Radio-Quiet (RQ) quasars. We have used high resolution Hubble Space T elescope (HST) data and deconvolution process to obtain a good determination of the host galaxy orientation. With these new measurements and a compilation of data from the literature, we find a significant correlation between the polarization position angle and the position angle of the major axis of the host galaxy/extended emission. The correlation appears different for Type 1 and Type 2 objects and depends on the redshift of the source. Interpretations in the framework of the unification model are discussed.
For Seyfert galaxies, the AGN unification model provides a simple and well established explanation of the Type 1/Type 2 dichotomy through orientation based effects. The generalization of this unification model to the higher luminosity AGNs that are t he quasars remains a key question. The recent detection of Type 2 Radio-Quiet quasars seems to support such an extension. We propose to further test this scenario. On the basis of a compilation of quasar host galaxy position angles consisting of previously published data and of new measurements performed using HST Archive images, we investigate the possible existence of a correlation between the linear polarization position angle and the host galaxy/extended emission position angle of quasars. We find that the orientation of the rest-frame UV/blue extended emission is correlated to the direction of the quasar polarization. For Type 1 quasars, the polarization is aligned with the extended UV/blue emission while these two quantities are perpendicular in Type 2 objects. This result is independent of the quasar radio-loudness. We interpret this (anti-)alignment effect in terms of scattering in a two-component polar+equatorial model which applies to both Type 1 and Type 2 objects. Moreover the orientation of the polarization -and then of the UV/blue scattered light- does not appear correlated to the major axis of the stellar component of the host galaxy measured from near-IR images.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا