ترغب بنشر مسار تعليمي؟ اضغط هنا

The centrality dependence of the midrapidity charged-particle multiplicity density ($|eta|$$<$1) is presented for Au+Au and Cu+Cu collisions at RHIC over a broad range of collision energies. The multiplicity measured in the Cu+Cu system is found to b e similar to that measured in the Au+Au system, for an equivalent N$_{rm part}$, with the observed factorization in energy and centrality still persistent in the smaller Cu+Cu system. The extent of the similarities observed for bulk particle production is tested by a comparative analysis of the inclusive transverse momentum distributions for Au+Au and Cu+Cu collisions near midrapidity. It is found that, within the uncertainties of the data, the ratio of yields between the various energies for both Au+Au and Cu+Cu systems are similar and constant with centrality, both in the bulk yields as well as a function of p$_{rm T}$, up to at least 4 GeV/$c$. The effects of multiple nucleon collisions that strongly increase with centrality and energy appear to only play a minor role in bulk and intermediate transverse momentum particle production.
Charged particle pseudorapidity distributions are presented from the PHOBOS experiment at RHIC, measured in Au+Au and Cu+Cu collisions at sqrt{s_NN}=19.6, 22.4, 62.4, 130 and 200 GeV, as a function of collision centrality. The presentation includes t he recently analyzed Cu+Cu data at 22.4 GeV. The measurements were made by the same detector setup over a broad range in pseudorapidity, |eta|<5.4, allowing for a reliable systematic study of particle production as a function of energy, centrality and system size. Comparing Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the overall shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants, N_part. Detailed comparisons reveal that the matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of eta is better for the same N_part/2A value than for the same N_part value, where A denotes the mass number. In other words, it is the geometry of the nuclear overlap zone, rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence.
We present first results on event-by-event elliptic flow fluctuations in nucleus-nucleus collisions corrected for effects of non-flow correlations where the magnitude of non-flow correlations has been independently measured in data. Over the measured range in centrality, we see large relative fluctuations of 25-50%. The results are consistent with predictions from both color glass condensate and Glauber type initial condition calculations of the event-by-event participant eccentricity fluctuations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا