ترغب بنشر مسار تعليمي؟ اضغط هنا

101 - B. A. Moores , A. Eichler , Y. Tao 2014
We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species (1H, 19F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy.
We present nanofabrication and mechanical measurements of single-crystal diamond cantilevers with thickness down to 85 nm, thickness uniformity better than 20 nm, and lateral dimensions up to 240 um. Quality factors exceeding one million are found at room temperature, surpassing those of state-of-the-art single-crystal silicon cantilevers of similar dimensions by roughly an order of magnitude. Force sensitivities of a few hundred zeptonewtons result for the best cantilevers at millikelvin temperatures. Single-crystal diamond could thus directly improve existing force and mass sensors by a simple substitution of resonator material, and lead to quantum nanomechanical devices with exceptionally low energy dissipation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا