ترغب بنشر مسار تعليمي؟ اضغط هنا

Yielding behavior is well known in attractive colloidal suspensions. Adhesive non-Brownian suspensions, in which the interparticle bonds are due to finite-size contacts, also show yielding behavior. We use a combination of steady-state, oscillatory a nd shear-reversal rheology to probe the physical origins of yielding in the latter class of materials, and find that yielding is not simply a matter of breaking adhesive bonds, but involves unjamming from a shear-jammed state in which the micro-structure has adapted to the direction of the applied load. Comparison with a recent constraint-based rheology model shows the importance of friction in determining the yield stress, suggesting novel ways to tune the flow of such suspensions.
We present a phenomenological model for granular suspension rheology in which particle interactions enter as constraints to relative particle motion. By considering constraints that are formed and released by stress respectively, we derive a range of experimental flow curves in a single treatment and predict singularities in viscosity and yield stress consistent with literature data. Fundamentally, we offer a generic description of suspension flow that is independent of bespoke microphysics.
The rheology of suspensions of Brownian, or colloidal, particles (diameter $d lesssim 1$ $mu$m) differs markedly from that of larger grains ($d gtrsim 50$ $mu$m). Each of these two regimes has been separately studied, but the flow of suspensions with intermediate particle sizes (1 $mutextrm{m} lesssim d lesssim 50$ $mu$m), which occur ubiquitously in applications, remains poorly understood. By measuring the rheology of suspensions of hard spheres with a wide range of sizes, we show experimentally that shear thickening drives the transition from colloidal to granular flow across the intermediate size regime. This insight makes possible a unified description of the (non-inertial) rheology of hard spheres over the full size spectrum. Moreover, we are able to test a new theory of friction-induced shear thickening, showing that our data can be well fitted using expressions derived from it.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا