ترغب بنشر مسار تعليمي؟ اضغط هنا

We present 21-cm absorption measurements towards 12 radio continuum sources with previously identified thermally-unstable warm neutral medium (WNM). These observations were obtained with the Expanded Very Large Array (EVLA) and were complemented with the HI emission spectra obtained with the Arecibo Observatory. Out of 12 sources, HI absorption was detected along 5 lines of sight (seven new absorption features in total), resulting in a detection rate of ~42%. While our observations are sensitive to the WNM with a spin temperature T_s<3000 K, we detected only two wide absorption lines with T_s=400-900 K. These temperatures lie above the range allowed for the cold neutral medium (CNM) by the thermal equilbrium models and signify the thermally unstable WNM. Several absorption features have an optical depth of only a few x10^{-3}. While this is close or lower than what is theoretically expected for the CNM, we show that these weak lines are important for constraining the fraction of the thermally unstable WNM. Our observations demonstrate that, for the first time, high bandpass stability can be achieved with the VLA, allowing detection of absorption lines with a peak optical depth of ~10^{-3}.
We present Giant Meterwave Radio Telescope (GMRT) and Westerbork ynthesis Radio Telescope (WSRT) observations of the recently discovered Local Group dwarf galaxy, Leo T. The peak HI column density is measured to be 7x10^20 cm^-2, and the total HI mas s is 2.8Xx10^5 Msun, based on a distance of 420 kpc. Leo T has both cold (~ 500 K) and warm (~ 6000 K) HI at its core, with a global velocity dispersion of 6.9 km/s, from which we derive a dynamical mass within the HI radius of 3.3x10^6 Msun, and a mass-to-light ratio of greater than 50. We calculate the Jeans mass from the radial profiles of the HI column density and velocity dispersion, and predict that the gas should be globally stable against star formation. This finding is inconsistent with the half light radius of Leo T, which extends to 170 pc, and indicates that local conditions must determine where star formation takes place. Leo T is not only the lowest luminosity galaxy with on-going star formation discovered to date, it is also the most dark matter dominated, gas-rich dwarf in the Local Group.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا