ترغب بنشر مسار تعليمي؟ اضغط هنا

216 - Aya Hamed , Troy Lee 2013
Say that A is a Hadamard factorization of the identity I_n of size n if the entrywise product of A and the transpose of A is I_n. It can be easily seen that the rank of any Hadamard factorization of the identity must be at least sqrt{n}. Dietzfelbing er et al. raised the question if this bound can be achieved, and showed a boolean Hadamard factorization of the identity of rank n^{0.792}. More recently, Klauck and Wolf gave a construction of Hadamard factorizations of the identity of rank n^{0.613}. Over finite fields, Friesen and Theis resolved the question, showing for a prime p and r=p^t+1 a Hadamard factorization of the identity A of size r(r-1)+1 and rank r over F_p. Here we resolve the question for fields of zero characteristic, up to a constant factor, giving a construction of Hadamard factorizations of the identity of rank r and size (r+1)r/2. The matrices in our construction are blockwise Toeplitz, and have entries whose magnitudes are binomial coefficients.
An $ntimes n$ matrix $M$ is called a textit{fooling-set matrix of size $n$} if its diagonal entries are nonzero and $M_{k,ell} M_{ell,k} = 0$ for every $k e ell$. Dietzfelbinger, Hromkovi{v{c}}, and Schnitger (1996) showed that $n le (mbox{rk} M)^2$, regardless of over which field the rank is computed, and asked whether the exponent on $mbox{rk} M$ can be improved. We settle this question. In characteristic zero, we construct an infinite family of rational fooling-set matrices with size $n = binom{mbox{rk} M+1}{2}$. In nonzero characteristic, we construct an infinite family of matrices with $n= (1+o(1))(mbox{rk} M)^2$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا