ترغب بنشر مسار تعليمي؟ اضغط هنا

124 - Juergen Ott 2014
We present a large-scale, interferometric survey of ammonia (1,1) and (2,2) toward the Galactic Center observed with the Australia Telescope Compact Array (ATCA). The survey covers Delta l ~1degree (~150pc) at an assumed distance of 8.5 kpc) and Delt a b ~0.2degree (~30pc) which spans the region between the supermassive black hole SgrA* and the massive star forming region SgrB2. The resolution is ~20 (~0.8pc) and emission at scales >~2 (>~3.2pc) is filtered out due to missing interferometric short spacings. Consequently, the data represent the denser, compact clouds and disregards the large scale, diffuse gas. Many of the clumps align with the 100 pc dust ring and mostly anti-correlate with 1.2cm continuum emission. We present a kinetic temperature map of the dense gas. The temperature distribution peaks at ~38K with a width at half maximum between 18K and 61K (measurements sensitive within Tkin~10-80K). Larger clumps are on average warmer than smaller clumps which suggests internal heating sources. Our observations indicate that the circumnuclear disk ~1.5 pc around SgrA* is supplied with gas by the 20km/s molecular cloud. This gas is substantially cooler than gas ~3-15pc away from SgrA*. We find a strong temperature gradient across SgrB2. Ammonia column densities correlate well with SCUBA 850um fluxes, but the relation is shifted from the origin, which may indicate a requirement for a minimum amount of dust to form and shield ammonia. Around the Arches and Quintuplet clusters we find shell morphologies with UV-influenced gas in their centers, followed by ammonia and radio continuum layers.
Results from a large, multi-J CO, {13}CO, and HCN line survey of Luminous Infrared Galaxies (L_{IR}>=10^{10} L_{odot}) in the local Universe (z<=0.1), complemented by CO J=4--3 up to J=13--12 observations from the Herschel Space Observatory (HSO), pa ints a new picture for the average conditions of the molecular gas of the most luminous of these galaxies with turbulence and/or large cosmic ray (CR) energy densities U_{CR} rather than far-UV/optical photons from star-forming sites as the dominant heating sources. Especially in ULIRGs (L_{IR}>10^{12} L_{odot}) the Photon Dominated Regions (PDRs) can encompass at most sim few% of their molecular gas mass while the large U_{CR} and the strong turbulence in these merger/starbursts, can volumetrically heat much of their molecular gas to T_{kin}sim(100-200)K, unhindered by the high dust extinctions. Moreover the strong supersonic turbulence in ULIRGs relocates much of their molecular gas at much higher average densities than in isolated spirals. This renders low-J CO lines incapable of constraining the properties of the bulk of the molecular gas in ULIRGs, with substantial and systematic underestimates of its mass possible when only such lines are used. A comparative study of multi-J HCN lines and CO SLEDs from J=1--0 up to J=13--12 of NGC 6240 and Arp 193 offers a clear example of two merger/starbursts whose similar low-J CO SLEDs, and L_{IR}/L_{CO,1-0}, L_{HCN, 1-0}/L_{CO,1-0} ratios, yield no indications about their strongly diverging CO SLEDs beyond J=4--3, and ultimately the different physical conditions in their molecular ISM. The much larger sensitivity of ALMA and its excellent site in the Atacama desert now allows the observations necessary to ....
We present a survey of atomic carbon (CI) emission in high-redshift (z>2) submillimeter galaxies (SMGs) and quasar host galaxies (QSOs). Sensitive observations of the CI(3P_1->3P_0) and CI(3P_2->3P_1) lines have been obtained at the IRAM Plateau de B ure interferometer and the IRAM 30m telescope. A total of 16 CI lines have been targeted in 10 sources, leading to a total of 10 detected lines --- this doubles the number of CI observations at high redshift to date. We include previously published CI observations (an additional 5 detected sources) in our analysis. Our main finding is that the CI properties of the studied high-redshift systems do not differ significantly from what is found in low-redshift systems, including the Milky Way. The CI(3P_2->3P_1)/CI(3P_1->3P_0) and the CI(3P_1->3P_0)/12CO(3-2) line luminosity (L) ratios change little in our sample, with respective ratios of 0.55+/-0.15 and 0.32+/-0.13. The CI lines are not an important contributor to cooling of the molecular gas (average L_CI/L_FIR ~ (7.7+/-4.6) x 10^-6). We derive a mean carbon excitation temperature of 29.1+/-6.3 K, broadly consistent with dust temperatures derived for high-redshift starforming systems, but lower than gas temperatures typically derived for starbursts in the local universe. The carbon abundance of X_CI/X_H2~8.4+/-3.5 x 10^-5 is of the same order as found in the Milky Way and nearby galaxies. This implies that the high-z galaxies studied here are significantly enriched in carbon on galactic scales, even though the look-back times are considerable (the average redshift of the sample sources corresponds to an age of the universe of ~2 Gyr).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا