ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on turbulent dynamo simulations in a spherical wedge with an outer coronal layer. We apply a two-layer model where the lower layer represents the convection zone and the upper layer the solar corona. This setup is used to study the coronal influence on the dynamo action beneath the surface. Increasing the radial coronal extent gradually to three times the solar radius and changing the magnetic Reynolds number, we find that dynamo action benefits from the additional coronal extent in terms of higher magnetic energy in the saturated stage. The flux of magnetic helicity can play an important role in this context.
Magnetic helicity fluxes in turbulently driven alpha^2 dynamos are studied to demonstrate their ability to alleviate catastrophic quenching. A one-dimensional mean-field formalism is used to achieve magnetic Reynolds numbers of the order of 10^5. We study both diffusive magnetic helicity fluxes through the mid-plane as well as those resulting from the recently proposed alternate dynamic quenching formalism. By adding shear we make a parameter scan for the critical values of the shear and forcing parameters for which dynamo action occurs. For this $alphaOmega$ dynamo we find that the preferred mode is antisymmetric about the mid-plane. This is also verified in 3-D direct numerical simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا