ترغب بنشر مسار تعليمي؟ اضغط هنا

The ability to obtain reliable point estimates of model parameters is of crucial importance in many fields of physics. This is often a difficult task given that the observed data can have a very high number of dimensions. In order to address this pro blem, we propose a novel approach to construct parameter estimators with a quantifiable bias using an order expansion of highly compressed deep summary statistics of the observed data. These summary statistics are learned automatically using an information maximising loss. Given an observation, we further show how one can use the constructed estimators to obtain approximate Bayes computation (ABC) posterior estimates and their corresponding uncertainties that can be used for parameter inference using Gaussian process regression even if the likelihood is not tractable. We validate our method with an application to the problem of cosmological parameter inference of weak lensing mass maps. We show in that case that the constructed estimators are unbiased and have an almost optimal variance, while the posterior distribution obtained with the Gaussian process regression is close to the true posterior and performs better or equally well than comparable methods.
Recent applications in machine learning have renewed the interest of the community in min-max optimization problems. While gradient-based optimization methods are widely used to solve such problems, there are however many scenarios where these techni ques are not well-suited, or even not applicable when the gradient is not accessible. We investigate the use of direct-search methods that belong to a class of derivative-free techniques that only access the objective function through an oracle. In this work, we design a novel algorithm in the context of min-max saddle point games where one sequentially updates the min and the max player. We prove convergence of this algorithm under mild assumptions, where the objective of the max-player satisfies the Polyak-L{}ojasiewicz (PL) condition, while the min-player is characterized by a nonconvex objective. Our method only assumes dynamically adjusted accurate estimates of the oracle with a fixed probability. To the best of our knowledge, our analysis is the first one to address the convergence of a direct-search method for min-max objectives in a stochastic setting.
Learning system dynamics directly from observations is a promising direction in machine learning due to its potential to significantly enhance our ability to understand physical systems. However, the dynamics of many real-world systems are challengin g to learn due to the presence of nonlinear potentials and a number of interactions that scales quadratically with the number of particles $N$, as in the case of the N-body problem. In this work, we introduce an approach that transforms a fully-connected interaction graph into a hierarchical one which reduces the number of edges to $O(N)$. This results in linear time and space complexity while the pre-computation of the hierarchical graph requires $O(Nlog (N))$ time and $O(N)$ space. Using our approach, we are able to train models on much larger particle counts, even on a single GPU. We evaluate how the phase space position accuracy and energy conservation depend on the number of simulated particles. Our approach retains high accuracy and efficiency even on large-scale gravitational N-body simulations which are impossible to run on a single machine if a fully-connected graph is used. Similar results are also observed when simulating Coulomb interactions. Furthermore, we make several important observations regarding the performance of this new hierarchical model, including: i) its accuracy tends to improve with the number of particles in the simulation and ii) its generalisation to unseen particle counts is also much better than for models that use all $O(N^2)$ interactions.
430 - Yuwen Chen 2020
Derivative-free optimization (DFO) has recently gained a lot of momentum in machine learning, spawning interest in the community to design faster methods for problems where gradients are not accessible. While some attention has been given to the conc ept of acceleration in the DFO literature, existing stochastic algorithms for objective functions with a finite-sum structure have not been shown theoretically to achieve an accelerated rate of convergence. Algorithms that use acceleration in such a setting are prone to instabilities, making it difficult to reach convergence. In this work, we exploit the finite-sum structure of the objective in order to design a variance-reduced DFO algorithm that provably yields acceleration. We prove rates of convergence for both smooth convex and strongly-convex finite-sum objective functions. Finally, we validate our theoretical results empirically on several tasks and datasets.
We propose a weakly-supervised approach for conditional image generation of complex scenes where a user has fine control over objects appearing in the scene. We exploit sparse semantic maps to control object shapes and classes, as well as textual des criptions or attributes to control both local and global style. In order to condition our model on textual descriptions, we introduce a semantic attention module whose computational cost is independent of the image resolution. To further augment the controllability of the scene, we propose a two-step generation scheme that decomposes background and foreground. The label maps used to train our model are produced by a large-vocabulary object detector, which enables access to unlabeled data and provides structured instance information. In such a setting, we report better FID scores compared to fully-supervised settings where the model is trained on ground-truth semantic maps. We also showcase the ability of our model to manipulate a scene on complex datasets such as COCO and Visual Genome.
Convolutional Neural Networks (CNN) have recently been demonstrated on synthetic data to improve upon the precision of cosmological inference. In particular they have the potential to yield more precise cosmological constraints from weak lensing mass maps than the two-point functions. We present the cosmological results with a CNN from the KiDS-450 tomographic weak lensing dataset, constraining the total matter density $Omega_m$, the fluctuation amplitude $sigma_8$, and the intrinsic alignment amplitude $A_{rm{IA}}$. We use a grid of N-body simulations to generate a training set of tomographic weak lensing maps. We test the robustness of the expected constraints to various effects, such as baryonic feedback, simulation accuracy, different value of $H_0$, or the lightcone projection technique. We train a set of ResNet-based CNNs with varying depths to analyze sets of tomographic KiDS mass maps divided into 20 flat regions, with applied Gaussian smoothing of $sigma=2.34$ arcmin. The uncertainties on shear calibration and $n(z)$ error are marginalized in the likelihood pipeline. Following a blinding scheme, we derive constraints of $S_8 = sigma_8 (Omega_m/0.3)^{0.5} = 0.777^{+0.038}_{-0.036}$ with our CNN analysis, with $A_{rm{IA}}=1.398^{+0.779}_{-0.724}$. We compare this result to the power spectrum analysis on the same maps and likelihood pipeline and find an improvement of about $30%$ for the CNN. We discuss how our results offer excellent prospects for the use of deep learning in future cosmological data analysis.
Generative Adversarial Networks (GANs) have shown remarkable results in modeling complex distributions, but their evaluation remains an unsettled issue. Evaluations are essential for: (i) relative assessment of different models and (ii) monitoring th e progress of a single model throughout training. The latter cannot be determined by simply inspecting the generator and discriminator loss curves as they behave non-intuitively. We leverage the notion of duality gap from game theory to propose a measure that addresses both (i) and (ii) at a low computational cost. Extensive experiments show the effectiveness of this measure to rank different GAN models and capture the typical GAN failure scenarios, including mode collapse and non-convergent behaviours. This evaluation metric also provides meaningful monitoring on the progression of the loss during training. It highly correlates with FID on natural image datasets, and with domain specific scores for text, sound and cosmology data where FID is not directly suitable. In particular, our proposed metric requires no labels or a pretrained classifier, making it domain agnostic.
Deep learning is a powerful analysis technique that has recently been proposed as a method to constrain cosmological parameters from weak lensing mass maps. Due to its ability to learn relevant features from the data, it is able to extract more infor mation from the mass maps than the commonly used power spectrum, and thus achieve better precision for cosmological parameter measurement. We explore the advantage of Convolutional Neural Networks (CNN) over the power spectrum for varying levels of shape noise and different smoothing scales applied to the maps. We compare the cosmological constraints from the two methods in the $Omega_M-sigma_8$ plane for sets of 400 deg$^2$ convergence maps. We find that, for a shape noise level corresponding to 8.53 galaxies/arcmin$^2$ and the smoothing scale of $sigma_s = 2.34$ arcmin, the network is able to generate 45% tighter constraints. For smaller smoothing scale of $sigma_s = 1.17$ the improvement can reach $sim 50 %$, while for larger smoothing scale of $sigma_s = 5.85$, the improvement decreases to 19%. The advantage generally decreases when the noise level and smoothing scales increase. We present a new training strategy to train the neural network with noisy data, as well as considerations for practical applications of the deep learning approach.
Dark matter in the universe evolves through gravity to form a complex network of halos, filaments, sheets and voids, that is known as the cosmic web. Computational models of the underlying physical processes, such as classical N-body simulations, are extremely resource intensive, as they track the action of gravity in an expanding universe using billions of particles as tracers of the cosmic matter distribution. Therefore, upcoming cosmology experiments will face a computational bottleneck that may limit the exploitation of their full scientific potential. To address this challenge, we demonstrate the application of a machine learning technique called Generative Adversarial Networks (GAN) to learn models that can efficiently generate new, physically realistic realizations of the cosmic web. Our training set is a small, representative sample of 2D image snapshots from N-body simulations of size 500 and 100 Mpc. We show that the GAN-generated samples are qualitatively and quantitatively very similar to the originals. For the larger boxes of size 500 Mpc, it is very difficult to distinguish them visually. The agreement of the power spectrum $P_k$ is 1-2% for most of the range, between $k=0.06$ and $k=0.4$. An important advantage of generating cosmic web realizations with a GAN is the considerable gains in terms of computation time. Each new sample generated by a GAN takes a fraction of a second, compared to the many hours needed by traditional N-body techniques. We anticipate that the use of generative models such as GANs will therefore play an important role in providing extremely fast and precise simulations of cosmic web in the era of large cosmological surveys, such as Euclid and Large Synoptic Survey Telescope (LSST).
This paper presents a novel approach for multi-lingual sentiment classification in short texts. This is a challenging task as the amount of training data in languages other than English is very limited. Previously proposed multi-lingual approaches ty pically require to establish a correspondence to English for which powerful classifiers are already available. In contrast, our method does not require such supervision. We leverage large amounts of weakly-supervised data in various languages to train a multi-layer convolutional network and demonstrate the importance of using pre-training of such networks. We thoroughly evaluate our approach on various multi-lingual datasets, including the recent SemEval-2016 sentiment prediction benchmark (Task 4), where we achieved state-of-the-art performance. We also compare the performance of our model trained individually for each language to a variant trained for all languages at once. We show that the latter model reaches slightly worse - but still acceptable - performance when compared to the single language model, while benefiting from better generalization properties across languages.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا