ترغب بنشر مسار تعليمي؟ اضغط هنا

We present fully sampled ~3 resolution images of the 12CO(J=2-1), 13CO(J=2-1), and C18O(J=2-1) emission taken with the newly developed 1.85-m mm-submm telescope toward the entire area of the Orion A and B giant molecular clouds. The data were compare d with the J=1-0 of the 12CO, 13CO, and C18O data taken with the Nagoya 4-m telescope and the NANTEN telescope at the same angular resolution to derive the spatial distributions of the physical properties of the molecular gas. We explore the large velocity gradient formalism to determine the gas density and temperature by using the line combinations of 12CO(J=2-1), 13CO(J=2-1), and 13CO(J=1-0) assuming uniform velocity gradient and abundance ratio of CO. The derived gas density is in the range of 500 to 5000 cm-3, and the derived gas temperature is mostly in the range of 20 to 50 K along the cloud ridge with a temperature gradient depending on the distance from the star forming region. We found the high-temperature region at the cloud edge facing to the HII region, indicating that the molecular gas is interacting with the stellar wind and radiation from the massive stars. In addition, we compared the derived gas properties with the Young Stellar Objects distribution obtained with the Spitzer telescope to investigate the relationship between the gas properties and the star formation activity therein. We found that the gas density and star formation efficiency are well positively correlated, indicating that stars form effectively in the dense gas region.
We have developed a two-beam waveguide-type dual-polarization sideband-separating SIS receiver system in the 100-GHz band for {it z}-machine on the 45-m radio telescope at the Nobeyama Radio Observatory. The receiver is intended for astronomical use in searching for highly redshifted spectral lines from galaxies of unknown redshift. This receiver has two beams, which have 45$^{primeprime}$ of beam separation and allow for observation with the switch in the on-on position. The receiver of each beam is composed of an ortho-mode transducer and two sideband-separating SIS mixers, which are both based on a waveguide technique, and the receiver has four intermediate frequency bands of 4.0--8.0 GHz. Over the radio frequency range of 80--116 GHz, the single-sideband receiver noise temperature is lower than about 50 K, and the image rejection ratios are greater than 10 dB in most of the same frequency range. The new receiver system has been installed in the telescope, and we successfully observed a $^{12}$CO ({it J}=3--2) emission line toward a cloverleaf quasar at {it z} = 2.56, which validates the performance of the receiver system. The SSB noise temperature of the system, including the atmosphere, is typically 150--300 K at a radio frequency of 97 GHz. We have begun blind search of high-{it J} CO toward high-{it z} submillimeter galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا