ترغب بنشر مسار تعليمي؟ اضغط هنا

The Plateau de Bure Interferometer has been used to map the continuum emission at 3.4 mm and 1.1 mm together with the J=1->0 and J=3->2 lines of HCN and HCO+ towards the binary star GV Tau. The 3.4 mm observations did not resolve the binary component s and the HCN J=1->0 and HCO+ J=1->0 line emissions trace the circumbinary disk and the flattened envelope. However, the 1.1 mm observations resolved the individual disks of GV Tau N and GV Tau S and allowed us to study their chemistry. We detected the HCN 3->2 line only towards the individual disk of GV Tau N, and the emission of the HCO+ 3->2 line towards GV Tau S. Simple calculations indicate that the 3->2 line of HCN is formed in the inner R<12 AU of the disk around GV Tau N where the HCN/HCO+ abundance ratio is >300. On the contrary, this ratio is <1.6 in the disk around GV Tau S. The high HCN abundance measured in GV Tau N is well explained by photo-chemical processes in the warm (>400K) and dense disk surface.
Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS22198+6336 and AFGL5142, reveal the presence of several complex organic molecules at ~500 AU scales, confir ming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH3CH2OH, (CH2OH)2, CH3COCH3, and CH3OH, with additionally CH3CHO, CH3OD and HCOOD for IRAS22198+6336, and C6H, and O13CS for AFGL5142. The emission of complex molecules is resolved down to sizes of ~300 and ~600 AU, for IRAS22198+6336 and AFGL5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as usually found. This is specially clear for the case of IRAS22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass >4 Msun. As for AFGL5142, the hot core emission is resolved into two elongated cores separated 1800 AU. A detailed comparison of the complex molecule peaks to the new CO(2-1) data and H2O maser data from literature suggests that also for AFGL5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا