ترغب بنشر مسار تعليمي؟ اضغط هنا

Only a few cases of type Ic supernovae (SNe) with high-velocity ejecta have been discovered and studied. Here we present our analysis of radio and X-ray observations of a Type Ic SN, PTF12gzk. The radio emission rapidly declined less than 10 days aft er explosion, suggesting SN ejecta expanding at high velocity (~0.3c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ~10 than the CSM around normal Type Ic SNe. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the VLA (improved sensitivity and dynamic scheduling), that are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions, as well as strong clues about the nature of their progenitor stars.
We report the discovery by the Palomar Transient Factory (PTF) of the transient source PTF11agg, which is distinguished by three primary characteristics: (1) bright, rapidly fading optical transient emission; (2) a faint, blue quiescent optical count erpart; and (3) an associated year-long, scintillating radio transient. We argue that these observed properties are inconsistent with any known class of Galactic transients, and instead suggest a cosmological origin. The detection of incoherent radio emission at such distances implies a large emitting region, from which we infer the presence of relativistic ejecta. The observed properties are all consistent with the population of long-duration gamma-ray bursts (GRBs), marking the first time such an outburst has been discovered in the distant universe independent of a high-energy trigger. We searched for possible high-energy counterparts to PTF11agg, but found no evidence for associated prompt emission. We therefore consider three possible scenarios to account for a GRB-like afterglow without a high-energy counterpart: an untriggered GRB (lack of satellite coverage), an orphan afterglow (viewing-angle effects), and a dirty fireball (suppressed high-energy emission). The observed optical and radio light curves appear inconsistent with even the most basic predictions for off-axis afterglow models. The simplest explanation, then, is that PTF11agg is a normal, on-axis long-duration GRB for which the associated high-energy emission was simply missed. However, we have calculated the likelihood of such a serendipitous discovery by PTF and find that it is quite small (~ 2.6%). While not definitive, we nonetheless speculate that PTF11agg may represent a new, more common (> 4 times the on-axis GRB rate at 90% confidence) class of relativistic outbursts lacking associated high-energy emission.
On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starti ng about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of dM/dt<10^-8 (w/100 km/s) [M_solar/yr] from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations we would have to wait for a long time (decade or longer) in order to more meaningfully probe the circumstellar matter of Ia supernovae.
We report the discovery by the Swift hard X-ray monitor of the transient source Swift J2058.4+0516 (Sw J2058+05). Our multi-wavelength follow-up campaign uncovered a long-lived (duration >~ months), luminous X-ray (L_X,iso ~ 3 x 10^47 erg s^-1) and r adio (nu L_nu,iso ~ 10^42 erg s^-1) counterpart. The associated optical emission, however, from which we measure a redshift of 1.1853, is relatively faint, and this is not due to a large amount of dust extinction in the host galaxy. Based on numerous similarities with the recently discovered GRB 110328A / Swift J164449.3+573451 (Sw J1644+57), we suggest that Sw J2058+05 may be the second member of a new class of relativistic outbursts resulting from the tidal disruption of a star by a supermassive black hole. If so, the relative rarity of these sources (compared with the expected rate of tidal disruptions) implies that either these outflows are extremely narrowly collimated (theta < 1 degree), or only a small fraction of tidal disruptions generate relativistic ejecta. Analogous to the case of long-duration gamma-ray bursts and core-collapse supernovae, we speculate that rapid spin of the black hole may be a necessary condition to generate the relativistic component. Alternatively, if powered by gas accretion (i.e., an active galactic nucleus [AGN]), Sw J2058+05 would seem to represent a new mode of variability in these sources, as the observed properties appear largely inconsistent with known classes of AGNs capable of generating relativistic jets (blazars, narrow-line Seyfert 1 galaxies).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا