ترغب بنشر مسار تعليمي؟ اضغط هنا

An orthonormal basis consisting of unentangled (pure tensor) elements in a tensor product of Hilbert spaces is an Unentangled Orthogonal Basis (UOB). In general, for $n$ qubits, we prove that in its natural structure as a real variety, the space of U OB is a bouquet of products of Riemann spheres parametrized by a class of edge colorings of hypercubes. Its irreducible components of maximum dimension are products of $2^n-1$ two-spheres. Using a theorem of Walgate and Hardy, we observe that the UOB whose elements are distinguishable by local operations and classical communication (called locally distinguishable or LOCC distinguishable UOB) are exactly those in the maximum dimensional components. Bennett et al, in their in-depth study of quantum nonlocality without entanglement, include a specific 3 qubit example UOB which is not LOCC distinguishable; we construct certain generalized counterparts of this UOB in $n$ qubits.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا