ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that the mathematical proof of the four color theorem yields a perfect interpretation of the Standard Model of particle physics. The steps of the proof enable us to construct the t-Riemann surface and particle frame which forms the gauge. We specify well-defined rules to match the Standard Model in a one-to-one correspondence with the topological and algebraic structure of the particle frame. This correspondence is exact - it only allows the particles and force fields to have the observable properties of the Standard Model, giving us a Grand Unified Theory. In this paper, we concentrate on explicitly specifying the quarks, gauge vector bosons, the Standard Model scalar Higgs $H^{0}$ boson and the weak force field. Using all the specifications of our mathematical model, we show how to calculate the values of the Weinberg and Cabibbo angles on the particle frame. Finally, we present our prediction of the Higgs $H^{0}$ boson mass $M_{H^{0}} = 125.992 simeq 126 GeV$, as a direct consequence of the proof of the four color theorem.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا