ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a chall enging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions.
Context-awareness is an essential requirement for pervasive computing applications, which enables them to adapt and perform tasks based on context. One of the adaptive features of context-awareness is contextual reconfiguration. Contextual reconfigur ation involves discovering remote service(s) based on context and binding them to the application components to realize new behaviors, which may be needed to satisfy user needs or to enrich user experience. One of the steps in the reconfiguration process involves a remote lookup to discover the service(s) based on context. This remote lookup process provides the largest contribution to reconfiguration time and this is due to fact that the remote calls are much slower than local calls. Consequently, it affects system performance. In pervasive computing applications, this may turn out to be undesirable in terms of user experience. Moreover, other distributed applications using the network may be affected as every remote method call decreases the amount of bandwidth available on the network. Various systems provide reconfiguration support and offer high-level reconfiguration directives to develop adaptive context-aware applications, but do not address this performance bottleneck. We address this issue and implement seamless caching of virtual stubs within our PCRA1 for improved performance. In this paper we present and describe our transparent caching support and also provide its performance evaluation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا