ترغب بنشر مسار تعليمي؟ اضغط هنا

Named Entity Recognition (NER) in Few-Shot setting is imperative for entity tagging in low resource domains. Existing approaches only learn class-specific semantic features and intermediate representations from source domains. This affects generaliza bility to unseen target domains, resulting in suboptimal performances. To this end, we present CONTaiNER, a novel contrastive learning technique that optimizes the inter-token distribution distance for Few-Shot NER. Instead of optimizing class-specific attributes, CONTaiNER optimizes a generalized objective of differentiating between token categories based on their Gaussian-distributed embeddings. This effectively alleviates overfitting issues originating from training domains. Our experiments in several traditional test domains (OntoNotes, CoNLL03, WNUT 17, GUM) and a new large scale Few-Shot NER dataset (Few-NERD) demonstrate that on average, CONTaiNER outperforms previous methods by 3%-13% absolute F1 points while showing consistent performance trends, even in challenging scenarios where previous approaches could not achieve appreciable performance.
Knowledge graphs link entities through relations to provide a structured representation of real world facts. However, they are often incomplete, because they are based on only a small fraction of all plausible facts. The task of knowledge graph compl etion via link prediction aims to overcome this challenge by inferring missing facts represented as links between entities. Current approaches to link prediction leverage tensor factorization and/or deep learning. Factorization methods train and deploy rapidly thanks to their small number of parameters but have limited expressiveness due to their underlying linear methodology. Deep learning methods are more expressive but also computationally expensive and prone to overfitting due to their large number of trainable parameters. We propose Neural Powered Tucker Network (NePTuNe), a new hybrid link prediction model that couples the expressiveness of deep models with the speed and size of linear models. We demonstrate that NePTuNe provides state-of-the-art performance on the FB15K-237 dataset and near state-of-the-art performance on the WN18RR dataset.
This paper is a study of fine-tuning of BERT contextual representations, with focus on commonly observed instabilities in few-sample scenarios. We identify several factors that cause this instability: the common use of a non-standard optimization met hod with biased gradient estimation; the limited applicability of significant parts of the BERT network for down-stream tasks; and the prevalent practice of using a pre-determined, and small number of training iterations. We empirically test the impact of these factors, and identify alternative practices that resolve the commonly observed instability of the process. In light of these observations, we re-visit recently proposed methods to improve few-sample fine-tuning with BERT and re-evaluate their effectiveness. Generally, we observe the impact of these methods diminishes significantly with our modified process.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا