ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological insulators represent a paradigm shift in surface physics. The most extensively studied Bi$_2$Se$_3$-type topological insulators exhibit layered structures, wherein neighboring layers are weakly bonded by van der Waals interactions. Using first principles density-functional theory calculations, we investigate the impact of the stacking sequence on the energetics and band structure properties of three polymorphs of Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$. Considering their ultrathin films up to 6 nm as a function of its layer thickness, the overall dispersion of the band structure is found to be insensitive to the stacking sequence, while the band gap is highly sensitive, which may also affect the critical thickness for the onset of the topologically nontrivial phase. Our calculations are consistent with both experimental and theoretical results, where available. We further investigate tribological layer slippage, where we find a relatively low energy barrier between two of the considered structures. Both the stacking-dependent band gap and low slippage energy barriers, suggest that polymorphic stacking modification may offer an alternative route for controlling the properties of this new state of matter.
The performance of perovskite solar cells recently exceeded 15% solar-to-electricity conversion efficiency for small-area devices. The fundamental properties of the active absorber layers, hybrid organic-inorganic perovskites formed from mixing metal and organic halides [textit{e.g.} (NH$_4$)PbI$_3$ and (CH$_3$NH$_3$)PbI$_3$], are largely unknown. The materials are semiconductors with direct band gaps at the boundary of the first Brillouin zone. The calculated dielectric response and band gaps show an orientation dependence, with a low barrier for rotation of the organic cations. Due to the electric dipole of the methylammonium cation, a photoferroic effect may be accessible, which could enhance carrier collection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا