ترغب بنشر مسار تعليمي؟ اضغط هنا

97 - Arne Rau 2011
Observations of the gamma-ray sky with Fermi led to significant advances towards understanding blazars, the most extreme class of Active Galactic Nuclei. A large fraction of the population detected by Fermi is formed by BL Lacertae (BL Lac) objects, whose sample has always suffered from a severe redshift incompleteness due to the quasi-featureless optical spectra. Our goal is to provide a significant increase of the number of confirmed high-redshift BL Lac objects contained in the 2 LAC Fermi/LAT catalog. For 103 Fermi/LAT blazars, photometric redshifts using spectral energy distribution fitting have been obtained. The photometry includes 13 broad-band filters from the far ultraviolet to the near-IR observed with Swift/UVOT and the multi-channel imager GROND at the MPG/ESO 2.2m telescope. Data have been taken quasi-simultaneously and the remaining source-intrinsic variability has been corrected for. We release the UV-to-near-IR 13-band photometry for all 103 sources and provide redshift constraints for 75 sources without previously known redshift. Out of those, eight have reliable photometric redshifts at z>1.3, while for the other 67 sources we provide upper limits. Six of the former eight are BL Lac objects, which quadruples the sample of confirmed high-redshift BL Lac. This includes three sources with redshifts higher than the previous record for BL Lac, including CRATES J0402-2615 with the best-fit solution at z~1.9.
77 - Arne Rau 2009
We present three new candidate AM CVn binaries, plus one confirmed new system, from a spectroscopic survey of color-selected objects from the Sloan Digital Sky Survey. All four systems were found from their helium emission lines in low-resolution spe ctra taken on the Hale telescope at Palomar, and the Nordic Optical Telescope and the William Herschel Telescope on La Palma. The ultra-compact binary nature of SDSS J090221.35+381941.9 was confirmed using phase-resolved spectroscopy at the Keck-I telescope. From the characteristic radial velocity `S-wave observed in the helium emission lines we measure an orbital period of 48.31 +/- 0.08 min. The continuum emission can be described with a blackbody or a helium white dwarf atmosphere of T_eff ~ 15,000K, in agreement with theoretical cooling models for relatively massive accretors and/or donors. The absence in the spectrum of broad helium absorption lines from the accreting white dwarf suggests that the accreting white dwarf cannot be much hotter than 15,000K, or that an additional component such as the accretion disk contributes substantially to the optical flux. Two of the candidate systems, SDSS J152509.57+360054.5 and SDSS J172102.48+273301.2, do show helium absorption in the blue part of their spectra in addition to the characteristic helium emission lines. This, in combination with the high effective temperatures of ~18,000K and ~16,000K suggests both two be at orbital periods below ~40min. The third candidate, SDSS J164228.06+193410.0, exhibits remarkably strong helium emission on top of a relatively cool (T_eff~12,000K) continuum, indicating an orbital period above ~50min.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا